Tema de casa

Fig.3.13 - TEC-J Generator de curent

Fig.3.14 - Regimul dinamic

PRECIZARI PRIVIND PREZENTAREA REZULTATELOR PENTRU TEMELE DIN ACEASTĂ Lucrare de Laborator

 Toate temele vor include o captura de ecran a rezolvării din enunț și explicațiile necesare.
Documentul va fi prezentat in format Printat sau PDF (pe laptop-ul propriu) si va avea urmatoarele date: Numele, Grupa, seria si subgrupa din care face parte autorul. Referate individuale !

SUCCES !

Numele:

FIȘĂ REZULTATE LUCRARE L5 TEC-J_SOFT-HARD

1. Caracteristica de transfer

5p. Tabelul 3.1 (fig.3.10a)										
V_{GS} [V]	0	-0,5	-1	-2	-2,2	-2,5	-2,7	-3	-3,01	-3,1
$\mathbf{V}_{\mathbf{D}\mathbf{D}}$ \mathbf{V}	15	15	15	15	15	15	15	15	15	15
$\mathbf{V_{DS}}$ V	<mark>2.11</mark>	<mark>4.75</mark>								
$R_{D}=R_{12}$ [K Ω]	1k	1k	1k	1k	1k	11k	11k	11k	11k	11k
I _D [mA]										

Curentul $I_D = (V_{DD} - V_{DS}) / R_D$

T1-2p. Inserați graficul caracteristicii de transfer $I_D = f(V_{GS})$ a tranzistorului TEC-J.

T2-2p. Determinați pe simulări tensiunea de prag la 10µA a tranzistorului TEC-J.

2. Caracteristica de ieșire

op. Tabelul 5.2	(Fig.3.100)								
, v	V _{DS} [V]	0	0.5	0.6	0.8	1	1.5	2	4
V _{GS} = 0[V]	V _{DS,măs} =V _{DS} [V]	<mark>0</mark>	<mark>0.5</mark>						<mark>4</mark>
	V _{DD} [V]	0	4,71						<mark>18.51</mark>
	$R_{12}+R_{J22}$ [K Ω]	1k							
	$I_D = [mA]$								
	V _{DS,măs} =V _{DS} [V]								
V	V _{DD} [V]								
V GS= -0,5[V]	$R_{12}+R_{J22}$ [K Ω]	1k							
	$I_D = [mA]$								
V _{GS} = - 1[V]	V _{DS,măs} =V _{DS} [V]								
	V _{DD} [V]								
	$R_{12}+R_{J22}$ [K Ω]	1k							
	$I_D = [mA]$								
V _{GS} = - 2[V]	V _{DS,măs} =V _{DS} [V]								
	V _{DD} [V]								
	$R_{12}+R_{J22}$ [K Ω]	1k							
	$I_D = [mA]$								
	V _{DS,măs} =V _{DS} [V]								
$V_{aa} = 220$	V _{DD} [V]								
$V_{GS} = -2, 2[V]$	$R_{12}+R_{J22}$ [K Ω]	11k							
	$I_D = [mA]$								

6p. Tabelul 3.2 (Fig.3.10b)

V _{GS} = -2,5[V]	V _{DS,măs} =V _{DS} [V]					
	V _{DD} [V]					
	$R_{12}+R_{J22}$ [K Ω]	11k				
	$I_D = [mA]$					
V _{GS} = - 3[V]	V _{DS,măs} =V _{DS} [V]					
	V _{DD} [V]					
	$R_{12}+R_{J22}$ [K Ω]	11k				
	$I_D = [mA]$					

R₁₂+**R**_{J22} este **RD** din circuit, iar in tabel $V_{DS,max} = V_{DS}$; $I_D = (V_{DD} - V_{DS}) / R_D$

T3-4p. Inserați graficul caracteristicii de ieșire $I_D = f(V_{DS}, V_{GS})$; V_{GS} - parametru.

3. TEC-J ca generator de curent

opr 1400141 511 (115:5:15)							
$\mathbf{R}_{\mathrm{S}}\left[\mathbf{\Omega}\right]$	10	100	300	500	700	900	1k
V _D [V]	14,91	14,98					
V _S [V]	0,151	1,5					
V _{DD} [V]	30	30	30	30	30	30	30
V _{DS} [V]	<mark>14,76</mark>	13,48					
V _{GS} [V]	0	0	0	0	0	0	0
I _D [mA]	15,09	15,02					
		-					

6n. Tabelul 3.4 (Fig.3.13)

 $I_D = (V_{DD} - V_D) / R_D \text{ si } V_{DS} = V_D - V_S$

T4-2p. Inserați graficul variației lui I_D funcție de V_{DS} ($I_D = f(V_{DS})$ - caracteristica curenttensiune).

4.1 Măsurători in regim dinamic

6p Tabelul 3.6 (Fig.3.)	l4) <mark>condıţı</mark>	a de cc: Vi	_{DS} =5 V (V	out in circ	uitul din fi	igura)	
V _{GS} [V]	0	-0.5	-1	-1,5	-2	-2.5	
I _D [mA]	14.57	10.26			1,94		
V _{out} [mV]	88,73						
$V_{gs}[mV]$	10	10	10	10	10	10	
$I_d [\mu A]$	<mark>88,73</mark>						
Av							
g_{ms} [mA/V]							
$\mathbf{A}_{\mathbf{V}} = \frac{v_o}{v_i} = -g_{ms} \cdot \mathbf{R}_D \left(\mathbf{R}_{\mathbf{V}} \right)$	in c.a. v _o =	V _{out} iar v _i =	<mark>: V_{gs}); Vgs</mark> -	-semnal sinı	usoidal, A=	10mV, f=1k	Hz

• • • • • • •

T5-2p. Inserați simularea amplificatorului sursă comună pentru o valoare V_{GS} aleasa din tabelul 3.6, Vgs=10mV și $V_{DS}=5V$ și calculați amplificarea si g_{ms} , apoi înserați graficele: $A_V=f(V_{GS})$ si $A_V=f(I_D)$.

4.2 Măsurători rezistenta dinamica in saturație rd,sat (Atenție!! Cond. in cc: V_{DS} = Vout = 5V cu VGS = - 2V valoare fixa, pentru ambele valori ale lui RD)

5p Tabel 3.5 (Fig.3.14)		
RD	11k	22k
I _D [mA]	1.85	
$V_{ds} = V_{out}[mV]$	342,61	
$V_{gs}[mV]$	<mark>10</mark>	
r _{d,sat}		

Se calculează apoi:
$$r_{d,sat} = \frac{1}{g_{d,sat}} = \frac{R_{D2} - R_{D1}}{\frac{R_{D2} \cdot V_{ds1}}{R_{D1} \cdot V_{ds2}} - 1}$$

NOTA

1. In tabelele 3.1, 3.2, 3,6 si la *pct.* 4.2, valorile negative pentru V_{GS} vor fi introduse in schemele de simulare aferente, in modul.

2. Răspunsul simulării in cc pentru schema corespunzătoare Fig.3.10a, trebuie sa arate conform figurii inserate mai jos; in caz contrar, pentru determinarea valorii la ieșirea VDS, va trebui modificata pe schema din figura sus amintita valoarea V_{GS} conform primei linii a tabelului 3.1, valoare VDS fiind citita in tabelul rezultat in urma simulării: Analysis -> DC Analysis -> Table of DC results !

