ELECTRONIC DEVICES AND CIRCUITS II

Mod. MCM4IEV

Volume 1/2
THEORY AND EXPERIMENTS

TEACHER / STUDENT manual

CONTENTS

Lesson B13: NPN and PNP TRANSISTORS page 1
Lesson B14: JFET and MOSFET FIELD-EFFECT TRANSISTORS page 11
Lesson B15: OPTOELECTRONIC COMPONENTS page 25
Lesson B16: TEMPERATURE TRANSDUCERS page 33
Lesson B17: AMPLIFIER CONFIGURATIONS page 38
Lesson B18: TRANSISTOR BIASING page 51
Lesson B19: OPERATING POINT STABILIZATION page 62
APPENDIX A: SYMBOLS USED page 75
APPENDIX B: DATA SHEETS page 77

SAFETY RULES

Keep this handbook at hand for any further help.
After the packaging has been removed, set all accessories in order so that they are not lost and check the equipment integrity. In particular, check that it shows no visible damage.

Before connecting the equipment to the $+/-12 \mathrm{~V}$ power supply, be sure that the rating corresponds to the one of the power mains.

This equipment must be employed only for the use it has been conceived, i.e. as educational equipment, and must be used under the direct supervision of expert personnel.

Any other use is not proper and therefore dangerous. The manufacturer cannot be held responsible for eventual damages due to inappropriate, wrong or unreasonable use.

LESSON B13: NPN and PNP TRANSISTORS

OBJECTIVES

- To identify PNP and NPN transistors
- To measure the interjunction resistances
- To use an ohmmeter to identify the three terminals: Base, Emitter, Collector
- To check the relationships beteween the main dc parameters
- To measure the collector current variation with base current
- To calculate the amplification factors α and β

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV or PSLC/EV, module holder structure mod.MU/EV), Individual control unit mod. SIS1/SIS2/SIS3 (optional)
- The module may work in a stand-alone mode, the faults are inserted via the on-board DIP switches: When using the external management units, the 4 left DIP switches must be in the "ON" position, and the 4 right DIP switches must be in the "OFF" position.
- experiment module mod.MCM4/EV
- multimeter

B13.1 BASIC THEORY

PNP and NPN structures

The models of transistors PNP and NPN are shown in figure B13.1. The central region is called the "Base" while the outer regions are known as the "Emitter" and "Collector".

fig. B13.1

The operation is based on the ability to control the current between the Collector and Emitter by a small current into the base B. This is obtained by a forward bias on the base-emitter and a reverse bias on the base-collector. With no bias voltages, the potential barriers are as shown in the figures.

fig. B13.2

PNP transistor operation

In normal operation, the base-emitter diode D_{2} is forward biased (positive on the emitter and negative on the base). The collector-base diode D_{1}, though is reverse biased with the collector at a negative potential with respect to the base (figure B13.3a).

With the base-collector circuit open (figure B13.3b), as the diode D_{2} is forward biased, its potential barrier decreases. This allows the positive carriers to move from the emitter to the base.

Now, consider a situation in which the collector-base circuit is closed and the base-emitter is open (figure B13.3c). The reverse biasing makes the potential barrier of the collector-base diode increase. So, only a small current flows from the base to the collector.

Now, suppose both the base-emitter and the collector-base circuits to be simultaneously closed (figure B13.3d). The base thickness is very thin compared to the average distance moved by the positive holes coming from the emitter, so a considerable number of these carriers can cross over and reach the collector-base junction. Here they will be attracted by the collector negative potential, so producing an emitter-collector current.

For NPN transistors (figure B13.4), a similar explanation and operation applies, but the voltages and currents are reversed compared to an NPN.

Fig. B13.3

Fig. B13.4
The PNP and NPN structures are the two types of bipolar transistors or "BJT" (Bipolar Junction Transistor).

Their symbols are as shown.

a) NPN
fig. B13.5

The arrow shows the direction of conventional current for the emitter. Figure B13.6 shows the correct biasing for a BJT.

NPN

PNP
fig. B13.6

In the case of DC , the variables that determine the operation of a transistor are (figure B13.7):

1. the three currents through the transistor $\left(\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{E}}\right)$
2. the three voltages present across the terminals $\left(\mathrm{V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{CE}}, \mathrm{V}_{\mathrm{CB}}\right)$
3. the two current amplification coefficients (α, β)

fig. B13.7

Basic equations

Taking the conventional current direction as that of positive carriers, the following equations apply:
$I_{E}=I_{C}+I_{B}$
$I_{C}=\alpha \cdot I_{E}+I_{C B O}$
where:

- the coefficient α is between 0.9 and 0.999
- $\alpha \cdot I_{\mathrm{E}}$ indicates the fraction of the emitter current reaching the collector (and α is almost equal to 1.0)
- $\mathrm{I}_{\text {CBO }}$, in the order of nA , is the (reverse) current in the reverse biased base-collector junction. It is measured with the emitter terminal open

The following equation is obtained by substituting I_{E} from B 13.1 , into B13.2:

$$
I_{C}=\beta \cdot I_{B}+I_{C E O}
$$

where:

$$
\begin{array}{ll}
\beta=\alpha /(1-\alpha) & \mathrm{B} 13.4 \\
I_{C E O}=(\beta+1) \cdot I_{C B O} & \mathrm{~B} 13.5
\end{array}
$$

From B13.4, using typical values of α you obtain the values of β ranging between 10 and 100 . From these equations, you can note that a small current, I_{B} in the base corresponds to a high current I_{C}, in the collector. This indicates that the transistor is a current amplifier. For the voltages we have :

$$
V_{C E}=V_{B E}+V_{C B}
$$

Static gain of the transistor

The following equation for β can be obtained from equations B13.3 and B13.5:

$$
\beta=\frac{I_{C}-I_{C B O}}{I_{B}+I_{C B O}} \quad \mathrm{~B} 13.7
$$

Ignoring the small contribution of $\mathrm{I}_{\text {CBO }}$ in the numerator and denominator of B13.7, the static current gain h_{FE} - the most important parameter of the BJT can be found :

$$
\mathbf{h}_{\mathrm{FE}}=\mathbf{I}_{\mathrm{C}} / \mathbf{I}_{\mathrm{B}}
$$

Characteristic curves

The last equations can be plotted on a graph, to give the characteristic curves shown in figure B13.8.

fig. B13.8 a. input characteristic of NPN, common emitter transistor
b. transfer characteristic of NPN, common emitter transistor
c. output characteristic of NPN, common emitter transistor

B13.2 EXERCISES

O MCM4	Disconnect all jumpers
On-board SIS1	Turn all switches OFF
SIS2	Insert lesson code: B13

Voltage and current measurements will be required on some circuits. If only a single multimeter is available, this will be used sometimes as a voltmeter or at other times as ammeter. When used as a voltmeter, remember to short-circuit the points of the circuit where the ammeter would be inserted.

PNP or NPN identification

You may need to check the polarity of your ohm-meter: the output lines are sometimes reversed from their normal polarity when used to measure resistance.

- determine which pins correspond to the Base, Emitter and Collector of transistors T2 and T3
- set the ohmmeter to the lowest range. Measure the junction resistance between base-emitter, base-collector and collector-emitter in both directions. Compare the measured values with those in the next table:

	R_{BC}		$\mathrm{R}_{\text {BE }}$		$\mathrm{R}_{\text {CE }}$	
	$\stackrel{\zeta}{\square}^{\circ}$	$\stackrel{\text { L }}{\sim}^{\circ}$	$\frac{\Gamma}{\tau}^{\circ}$	$\stackrel{\llcorner }{\square}^{\circ}$	$\stackrel{\square}{\square}^{\circ}$	$\stackrel{\Gamma}{\circ}^{\circ}$
T_{2}	low	∞	low	∞	∞	∞
T_{3}	∞	low	∞	low	∞	∞

- With the obtained resistance values, check that the transistor T2 is an NPN and that the transistor T3 is a PNP

Q1 What is a simple representation of a transistor ?

SET

$A \quad B$
12 as two diodes in series, but in opposite directions, with base mid-point
24 as two diodes in parallel
31 as a normal diode and a Zener diode in series
$4 \quad 5$ with two diodes mounted in antiparallel
53 none of the above
Note that the pins of a transistor can be identified with this method.

Note also that the actual resistances can vary quite widely, even for BJTs from the same batch.

Experimental determination of the current relationships

- Set the variable power supply Vcc (Sez. (S5)) to +12 V . Connect jumpers $\mathrm{J} 2, \mathrm{~J} 8$, J 6 ; insert the ammeters to produce the circuit of figure BI3.10.

fig.B13.10
- measure the collector current I_{C} for the base current values I_{B} in the next table.

$\mathrm{I}_{\mathrm{B}}(\mu \mathrm{A})$	10	30	50	70	90
$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$					
h_{FE}					

- Plot the curve $\mathrm{I}_{\mathrm{C}}=\mathrm{f}\left(\mathrm{I}_{\mathrm{B}}\right)$. I_{B} is the horizontal axis. The curve $\mathrm{I}_{\mathrm{C}}=\mathrm{f}\left(\mathrm{I}_{\mathrm{B}}\right)$ is partly linear. Its slope gives the value of the static current gain, represented by

$$
\mathrm{h}_{\mathrm{FE}}=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}
$$

- calculate the current gain h_{FE} for each pair of values in the last table

Q2 What range does $h_{F E}$ lie in?
SET

A	B	
1	6	$1-10$
2	1	$10-20$
3	5	$20-40$
4	3	$100-400$
5	4	$500-1000$
6	2	$1000-2000$

On-board SIS1	Turn switch S1 ON
SIS2	Press INS

Q3 What has happened in the circuit and what is the reason for this?

SET	
$A \quad B$	
15 circuit	the power supply has been disconnected from the whole and so nothing can be measured
$\begin{aligned} & 2 \\ & \text { and } \end{aligned}$	the power supply has been disconnected from the collector
4	I_{C} is increased due to a transistor short-circuit between C and E
41	I_{C} is zero due to a disconnection of the base bias circuit
$5 \quad 2$	I_{C} is zero due to disconnection of the emitter

on-board SIS1
Turn switch S1 to OFF

Relationship between Collector and Emitter currents

- vary the last circuit, disconnecting the ammeter from the transistor base; connect J5, disconnect J6, and connect the ammeter across 5 6 to measure the emitter current
- turn RV1 so that $\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}$, initially
- measure I_{E} for this value of I_{C}
- calculate the coefficient α

Q4 What is the value of α ?

> | SET | | |
| :--- | :--- | :--- |
| A | B | |
| 1 | 2 | always negative |
| 2 | 5 | more than 10 |
| 3 | 1 | less than 10 |
| 4 | 6 | a little over 1 |
| 5 | 4 | a little under 1 |
| 6 | 3 | always equal to 2 |

B13.3 SUMMARY QUESTIONS

Q5 How many junctions are there in a NPN transistor?

$l l$	SET	
A	B	
1	4	3
2	3	2
3	2	1
4	1	0

Q6 Which ratio defines the amplification coefficient α of a transistor ?

l	SET	
A	B	
1	1	$\mathrm{I}_{B} / \mathrm{I}_{\mathrm{C}}$
2	5	$\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{B}}$
3	2	$\left(\mathrm{I}_{\mathrm{C}}-\mathrm{I}_{\mathrm{CBO}}\right) / \mathrm{I}_{\mathrm{E}}$
4	4	$\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{E}}$
5	3	$\left(\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{CBO}}\right) / \mathrm{I}_{\mathrm{E}}$

Q7 Using the normal conventional direction for current flow, the correct equation for a BJT PNP is:

SET

$A \quad B$
$1 \quad 4 \quad \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}$
$21 \quad \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{E}}$
$3 \quad 2 \quad-\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{C}}$
$4 \quad 3 \quad \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{C}}$
Q8 The coefficients α and β are related by the equation :

SET

A B
$12 \alpha / 2=\beta+1$
$24 \alpha=(\beta-1) /(\beta+1)$
$31 \quad \beta=\alpha /(1-\alpha)$
$43 \beta=\alpha+1$
Q9 If $\beta=50$ in a transistor, what is the value of α ?
SET
$A \quad B$
150.96
$\begin{array}{lll}2 & 6 & 0.98\end{array}$
$\begin{array}{lll}3 & 2 & 1.02\end{array}$
$\begin{array}{lll}4 & 1 & 0.90\end{array}$
$\begin{array}{lll}5 & 3 & 0.5\end{array}$
$\begin{array}{lll}6 & 4\end{array}$

Lesson B14: JFET and MOSFET FIELD-EFFECT TRANSISTORS

OBJECTIVES

- To find the output characteristic $\mathrm{I}_{\mathrm{D}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{DS}}\right)$
- To find the transfer characteristic $\mathrm{I}_{\mathrm{D}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{GS}}\right)$
- To use the FET as a :
small signal amplifier
DC current generator

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PSI-PSU/EV or PSLC/EV, module holder structure mod.MU/EV), Individual control unit mod. SIS1/SIS2/SIS3 (optional).
- experiment module mod.MCM4/EV
- multimeter
- oscilloscope

B14.1 BASIC THEORY

The Junction Field Effect Transistor (JFET)

The field-effect transistor differs from the PNP or NPN bipolar transistors in its operation as well as in its structure. The current in the JFET (Junction Field Effect Transistor) consists of a single type of carrier. The JFET symbols, for N and P channels are shown in figure B14.1, while the physical models are outlined in figure B14.2. The terminal D is the Drain, G the Gate, S is the Source.

The main difference between a bipolar transistor and a FET is that a BJT controls one current (I collector) with another current (I base), while a FET controls a current (I Drain) with a voltage (V Gate-Source).

fig. B14.1

fig. B14.2

Consider an N channel JFET with dc voltages shown in figure B14.3.

If the voltage V_{G} is zero, the current I_{D} flows through the resistance of the doped N type semi-conductor. If V_{G} increases, reverse biasing the PN junction, some of carriers in the junction region are removed. The volume of the region which has no carriers is proportional to this applied voltage (figure B14.4).

fig.B14.4
You can note that the N channel restricts, and that its conductivity decreases. In other words, the resistance between S and D increases as the volume of the depletion region increases. In normal operation the PN junction between Gate and Source is reverse biased. The input current is very low: this causes the the JFET to have a very high input impedance, of many Megaohm.

Suppose now we short-circuit the Gate and the Source and apply a voltage between them, $\mathrm{V}_{\mathrm{DS}}>0$. As the Drain is at positive potential with respect to the Gate, the PN junction becomes more reverse biased the higher the voltage V_{DS} (figure B14.5). In these conditions a depletion region occurs which reduces the channel conductivity. Increasing the voltage V_{DS}, produces two opposed effects:

1. the current density between D and S increases
2. the channel resistance between D and S increases.

As the last effect is non linear with the voltage, a point is reached for a certain value of $V_{D S}$ where the current I_{D} no longer increases. When $V_{G S}$ $=0$ Volt, the max. current between drain and source is called $\mathrm{I}_{\mathrm{DSS}} . \mathrm{V}_{\mathrm{P}}$ (pinch-off voltage) is the minimum voltage V_{DS} for which the current I_{D} has a constant value $\mathrm{I}_{\text {Dss }}$.

fig. B14.5
The current I_{D} is then proportional to the voltage V_{DS} and to the voltage V_{GS}. With $\left|\mathrm{V}_{\mathrm{GS}}\right|>\mathrm{V}_{\mathrm{P}}$, the channel is completely closed and $\mathrm{I}_{\mathrm{DS}}=0$, irrespective of the voltage $V_{D S}$. This voltage value $V_{G S}$ is called the disconnected voltage and is indicated by $\mathrm{V}_{\mathrm{GSoff}}$. Note that $\mathrm{V}_{\mathrm{GSoff}}$ differs from V_{P} only in sign : $V_{G S o f f}=-V_{P}$

Characteristic curves

The output, or Drain characteristics of an FET (fig.B14.6) show how the Drain current I_{D} depends on the Drain-Source voltage $V_{D S}$ (for different values of the Gate-Source voltage V_{GS}). Note that:

- for $\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{P}}-\left|\mathrm{V}_{\mathrm{CS}}\right|$ the FET behaves as a resistor (ohmic region)
- for $\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{P}}-\left|\mathrm{V}_{\mathrm{GS}}\right|$ the current I_{D} does not depend on V_{DS} but depends only on $V_{G S}$ (saturation region)
- when V_{GS} decreases (becomes more negative), so does I_{D}.

Mutual conductance characteristic

In the saturation region of the $\mathrm{FET}, \mathrm{I}_{\mathrm{D}}$ depends in practice only on V_{GS} (fig.B14.7). This dependence is expressed by the equation:

$$
\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}} \cdot\left(1-\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{~V}_{\mathrm{P}}}\right)^{2}
$$

where:
$\mathrm{I}_{\mathrm{DS}}=$ Drain current in saturation region
$\mathrm{I}_{\mathrm{DSS}}=$ Drain current for $\mathrm{V}_{\mathrm{GS} 6}=0$
$V_{P}=$ Pinch-off voltage.

figure B14.6

figure B14.7

The MOSFET

The "Metal-Oxide-Silicon FET" represents an evolution of the JFET in its technology and construction. Although its principle of operation is similar to the FET, it has a different structure. A thin layer of insulating oxide is placed between the Gate and the Drain-Source channel. For this reason, it is sometimes called an "Insulated Gate FET" (IGFET). There are two kinds of MOSFET. One type operates on the principle of carrier depletion, and the other on the principle of carrier enhancement. Their symbols are shown in figure B14.8.

fig. B14.8

The structure of an N channel DEPLETION MOSFET is as shown in figure B14.9. As in the FET, the channel between D and S is continuous. It is supported by a lightly doped semiconductor base (P type), called the "Substrate". In the absence of Gate biasing, the MOSFET conducts with the carriers available in the channel. If the Gate is reverse biased, the channel is depleted of its carriers and conduction decreases. The
"Drain current" / "Drain-Source voltage" output characteristic is shown in figure B14.10.

This description of the N-channel MOSFET can also be applied to Pchannel one, simply by reversing the direction of the currents and voltages.

fig. B14.9

fig. B14.10

Enhancement Type MOSFET

The N channel Enhancement type MOSFET is shown in figure B14.11. It does not have a continuous channel between Drain and Source, and so it cannot conduct when there is no Gate biasing. However for $\mathrm{V}_{\mathrm{GS}}>0$ negative carriers are attracted by the Gate into the area between S and D. An N -channel is created and the device can then conduct.

This is the only kind of FET which is cut off with $V_{G S}=0$, and which controls the Drain current with a positive V_{GS}. This behavior is similar to a bipolar transistor. Figure B14.12. shows the "Drain current" / "Drain-Source voltage" output characteristic.

fig. B14.11

fig. B14.12

MOSFET compared to the JFET

The advantages of the MOSFET compared to the JFET are:

- as the Gate is insulated, these devices present an even higher input impedance than the JFET
- the Gate usually has a lower input capacitance, so the MOSFET shows a better response to high frequencies.
The disadvantage of MOS technology is that the insulating coating of SiO_{2} can be damaged permanently by electrostatic discharges. They must be handled with care before connection to the circuit. One simple protection consists of short-circuiting the three pins. Another is to store them in anti-static material.

JFET Amplification circuit

The next lessons analyze in detail the different transistor amplifier configurations. In this lesson, we want to give you some general ideas on the subject by examining a JFET amplifier.
To use a FET as amplifier, chose a Gate biasing which gives operation in the linear region of the output characteristics. A variation of the voltage V_{GS} then produces a proportional variation in the current I_{D} :
$\mathrm{I}_{\mathrm{D}}=\mathrm{g}_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{GS}}$
where the parameter g_{m} is defined as the "transconductance" and gives the effect of the Gate voltage on the Drain current (fig.B14.13), in other words the gain.
Figure B14.14 shows a JFET amplifier circuit. Consider v_{i} and v_{o} as the input and output voltages. The voltage gain "Gv" of the amplifier, i.e. the ratio between the amplitudes of the output and input signals, is:

The typical value of g_{m} is between 0.1 and $10 \mathrm{~mA} / \mathrm{V}$.

fig. B14.13

fig. B14.14

Constant current generator

Let's examine the JFET circuit.
An ideal current generator is a circuit which supplies a constant current, no matter what the load is. This source must have a very high output impedance. Figure B14.15 shows an example of a FET current generator.

fig.B14.15
In this circuit, V_{GS} is equal to 0 Volt. If V_{DS} is greater than the voltage V_{P}, the current I_{D} in the circuit is constant and equal to $I_{D S s}$. The circuit is a constant current generator when $V_{D S}$ exceeds V_{P}.

As $V_{D S}=V_{D D}-R_{L} \cdot I_{D}$, it follows that:

$$
\mathrm{R}_{\mathrm{L}}<\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{P}}\right) / \mathrm{I}_{\mathrm{DSS}}
$$

If R_{L} is greater than this, the current rapidly decreases (figure B14.16).

fig.B14.16

B14.2 EXERCISES

MCM4	Disconnect all jumpers
on-board SIS1	Turn all switches $O F F$
$S I S 2$	Insert lesson code: $B 14$

Determining the output characteristic of a JFET

- Connect jumpers J31, J32, J18, the ammeter between 23 and 24, the voltmeter (or the oscilloscope) between Drain and Source to produce the circuit of fig.B14.17

- Adjust the voltage Vcc of the variable power supply to 0 V initially. Then gradually increase Vcc and measure the current I_{D} into the circuit and the voltage $V_{D S}$ of the FET for each value of Vcc in the following table:

$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	1	2	3	4	5	6	8	10	12	15	20
$\mathrm{~V}_{\mathrm{DS}}(\mathrm{V})$											
$\mathrm{I}_{\mathrm{D}}(\mathrm{mA})$											

- Plot the curve $I_{D}=f\left(V_{D S}\right)$ (see next example) and find the pinch-off voltage V_{P}, and the saturation current $\mathrm{I}_{\mathrm{DSS}}$.

\boldsymbol{O} on-board SIS1	Turn switch S4 ON
$\boldsymbol{\text { SIS2 }}$	Press $I N S$

Q1 What has happened in the circuit?

SET		
A	B	
1	5	a resistor in series with R_{12} has been disconnected
2	3	the FET is short-circuited between the Drain and the Source
3	1	the FET is open-circuited between Drain and Source
4	2	the Gate circuit has been disconnected
5	4	the power supply voltage has decreased

Determining the transfer characteristic

- Produce the circuit of fig.B14.18, by connecting jumpers J30, J37, J 19 , the ammeter and the voltmeter (or the oscilloscope) as shown in the figure

fig.B14.18
- vary $V_{G S}$ by adjusting $R V_{8}$ and measure the current I_{D} for each value of the following table

$\mathrm{V}_{\mathrm{GS}}[\mathrm{V}]$	0	-0.5	-1	-1.5	-2	-2.5	-3	-3.5	-4	-4.5
$\mathrm{I}_{\mathrm{D}}[\mathrm{mA}$										

- evaluate the Gate voltage $\mathrm{V}_{\text {Goff }}$ for which the Drain current is reduced to zero
- plot the curve $\mathrm{I}_{\mathrm{D}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{GS}}\right)$ (see next example), and evaluate the value of $\mathrm{I}_{\mathrm{DSS}}$

Q2 How can the graph of I_{D} best be described?

SET

$A \quad B$
13 it has a max. at $\mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}$
24 it is a straight line crossing the origin of the axes
35 it is a straight line parallel to the axis of $V_{G S}$
42 it is an arc of a circle whose center is the origin
$5 \quad 1 \quad$ it is a curve which decreases as $V_{G S}$ decreases

Displaying the output characteristics on an oscilloscope

- Produce the circuit of fig.B14.19, by connecting jumpers J20, J21, J22, J33, J30
- set the oscilloscope to $\mathrm{X}-\mathrm{Y}$ mode ($50 \mathrm{mV} / \mathrm{div}$ on channel $\mathrm{Y}, 5 \mathrm{~V} / \mathrm{div}$ on channel X), and connect the probes as shown (!!! use the differential probe for channel \mathbf{X} !!!!). The voltage across R_{18} is proportional to the current I_{D}, and at the Drain the voltage is $V_{D S}$

fig.B14.19
- vary V_{GS} by adjusting RV8, and check the variation of the curve I_{DS} $=f\left(V_{D S}\right)$
- vary V_{DS} by adjusting RV5 and note how I_{DS} changes

Displaying the transfer characteristics on an oscilloscope

- produce the circuit of fig.B14.20 by connecting jumpers J19, J21, J22, J33, J25, J29, J26
- set the oscilloscope to $\mathrm{X}-\mathrm{Y}$ mode ($0.2 \mathrm{~V} / \mathrm{div}$ on channel $\mathrm{Y}, 1 \mathrm{~V} / \mathrm{div}$ on channel X), and connect the probes as shown (!!! use the differential probe for channel \mathbf{X} !!!!). The voltage across R18 is proportional to the current I_{D}, and on the Gate the voltage is $V_{G S}$

fig.B14.20

Q3 From the display, note some characteristic points of the curve $\mathrm{I}_{\mathrm{D}}-\mathrm{V}_{\mathrm{G}}$. For $\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{P}}$ what is I_{D} ?

SET
$A \quad B$
$\begin{array}{lll}1 & 6 & 10 \mathrm{~mA}\end{array}$
$25 \quad 12 \mathrm{~mA}$
$3 \quad 2 \quad 0 \mathrm{~mA}$
$4 \quad 3 \quad 5 \mathrm{~mA}$
512 mA

- Calculate the slope of the curve for $-2 \mathrm{~V}<\mathrm{V}_{\mathrm{GS}}<-0.5 \mathrm{~V}$, which represents $g_{m}=\Delta I_{D} / \Delta V_{G S}$. You will find a value of g_{m} equal to some mA / V

Small signal (ac) amplifier circuit

- Adjust the variable power supply voltage Vcc to 24 V .
- Connect jumpers J23, J24, J29, J27, J34, J36, J22, J18, to produce the circuit of figure B14.21
- connect the oscilloscope as shown in the figure, to display the input $\left(\mathrm{v}_{\mathrm{i}}\right)$ and output signals $\left(\mathrm{v}_{\mathrm{O}}\right)$ of the circuit
- use RV6 to adjust the input signal to 1 Vpp
- vary RV9 until you obtain the best possible sine wave on the output
- vary trimmer RV6, to increase the input voltage, and note the output signal distortion
- measure the peak-to-peak value of the output signal in absence of distortion
- calculate the amplification of the signal $G_{v}=v_{o} / v_{i}$

Q4 What is the approximate amplification?
SET
A B
$1 \begin{array}{ll}1 & 3\end{array}$
242
$3 \quad 6 \quad 5$
$\begin{array}{lll}4 & 1 & 10\end{array}$
$5 \quad 2 \quad 50$

Constant current generator

- Adjust the variable power supply voltage to +24 Vdc . Connect jumpers J18, J21, J31, J34, the ammeter between points 23 and 24 and the oscilloscope as shown (!!! use the differential probe !!!), to produce the circuit of figure B14.22

fig.B14.22
- minimize the resistance value of RV9 and measure the current into the circuit
- vary RV9 and note if the current remains constant. Note also the behaviour of the voltages V_{DS} and V_{RV} (across the trimmer) on the oscilloscope

Q5 How do the two voltages change as the resistance of $R V_{9}$ increases?

SET

$A \quad B$
14 the two voltages stay the same
25 the two voltages decrease
32 the two voltages increase
41 the voltage V_{DS} increases, the other decreases
53 the voltage $V_{D S}$ stays constant, the other increases

\boldsymbol{O} on-board SISI	Turn switch S8 ON
SIS2	Press INS

Q6 What happens to the circuit?

SET

$A \quad B$
15 the FET is open
21 the FET is short-circuited
34 the power supply voltage has increased
$4 \quad 2$ missing power supply of T6 drain
53 none of the above

\rightarrow on-board SIS1
 Turn switch S8 OFF

B14.3 SUMMARY QUESTIONS

Q7 What is a "channel" in a FET ?

SET

$A \quad B$
12 the region between gate and drain
25 the region between gate and source
34 the region between drain and source
43 the connection between the two gate regions
51 the input connection to the FET
Q8 The drain-source channel is "cut-off" (and so $\mathrm{I}_{\mathrm{D}}=0$) when:
SET
$A \quad B$
$14 \quad \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$23 \quad \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{P}}$
$3 \mathrm{l} \quad \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$
$45 \quad \mathrm{~V}_{\mathrm{GS}}=-5 \mathrm{~V}$
$52 \quad \mathrm{~V}_{\mathrm{DS}}=-1 \mathrm{~V}$
Q9 In its linear region a FET behaves as:
SET
$A \quad B$
12 a resistance
23 a diode
35 a capacitor
41 an inductor
54 an open switch

LESSON B15: OPTOELECTRONIC COMPONENTS

OBJECTIVES

- To study the resistance-luminosity characteristic of a photoresistor
- To study the current-luminosity characteristic of a photodiode
- To analyze the response of a photoresistor to light

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV or PSLC/EV, module holder structure mod. MU/EV), Individual Control Unit mod.SIS1/SIS2/SIS3 (optional).
- experiment module mod.MCM4/EV
- multimeter

B15.1 BASIC THEORY

The photoresistor

A photoresistor is a semiconductor device sensitive to electromagnetic radiation around the visible spectrum (wave-length between 380 and 760 nm). It has a very high resistance value in the dark, and its resistance drops when light radiation on it increases.

The photoresistor is made from a thin layer of semiconductor material, often cadmium sulfide (CdS). The incident light radiation gives part of its energy to the electron-hole pairs, which can reach an energy level sufficient to enter the conduction band. Consequently there are free carriers which increase conduction and so the resistance drops. The number of free carriers generated is approximately proportional to the intensity of the light radiation.

In practical applications an external voltage is connected across the photoresistor terminals. The carriers can then cross the device and flow in the external circuit.

Figure B15.1 shows the typical dependence of the resistance, R, of a photoresistor on the light intensity measured in lux.

Photodiodes

A photodiode is similar to a normal semiconductor diode.
It is constructed so that light incident on the semi-conductor material is able to reach the junction region. The incident light energy on the electron-hole pair breaks their links, so the freed electrons are attracted back to the N type region, and the holes are attracted to the P type region.

A current (photocurrent) is thus generated by the diode, depending on the light intensity. The direction of this photocurrent is from the cathode to the anode; for this reason, in normal applications the photodiode is reverse biased.

When the photodiode is not illuminated, there is a weak dark current I_{d} across the junction, which is equal to the leakage current of a normal reverse biased diode.

When the device is illuminated, the total current I_{t} is the sum of the dark current I_{d} and the photocurrent I_{p} :
$I_{t}=I_{d}+I_{p}$

Figure B15.2 shows the voltage-current characteristics of a photodiode, at different values of incident light energy.

Phototransistors

A phototransistor is similar to a normal BJT transistor, with three layers of doped semiconductor materials, NPN or PNP.

The light radiation is concentrated onto the region near the collectorbase junction. To understand the operation of an NPN phototransistor, suppose that the base-emitter junction is forward biased, while the collector-base is reverse biased. This is obtained applying a voltage V_{CE} with the collector at a higher potential than the base. With this biasing, the transistor operates in the active region.
Suppose that at start there is no incident radiation.
In this situation, there are only a few thermally generated carriers: the electrons cross the junction from the base to the collector, and the holes cross from the collector to the base. Together they constitute the reverse saturation current $\mathrm{I}_{\mathrm{cbo}}$ of the collector junction.

The current is given by the equation
$I_{c}=(1+\beta) \cdot I_{c b o}+\beta \cdot I_{b}$
where I_{b} is the base current and β the gain of the transistor.
Supposing the base is open circuit $\left(\mathrm{I}_{\mathrm{b}}=0\right)$, then this equation becomes:
$\mathrm{I}_{\mathrm{C}}=(1+\Omega) \cdot \mathrm{I}_{\mathrm{cbo}}$
Now, if the device is illuminated, more minority carriers are generated by photoelectric effect. These contribute to the leakage current, in the same way as carriers generated by thermal effects. If I_{p} is the reverse leakage current component due to light, the total collector current is:
$I_{c}=(1+\beta) \cdot\left(I_{c b o}+I_{p}\right)$
Note that the effect of the radiation on the transistor is to multiply the current produced by the factor $(1+\beta)$.

Figure B15.3 shows the "collector voltage-emitter current" curves of a N-P-N phototransistor for different values of the incident light intensity. If the base terminal is connected, and a base current I_{b} flows, the collector current is increased by the amount $B \cdot \mathrm{I}_{\mathrm{b}}$.

fig. B15.3

B15.2 EXERCISES

\boldsymbol{O} MCM4	Disconnect all jumpers
$\boldsymbol{\sigma}$ on-board SIS1	Turn all switches OFF
$\boldsymbol{\sigma}$ SIS2	Insert lesson code: B15

Resistance-light characteristic of the photoresistor

- Connect jumper J39, and connect the ohmmeter between points 30 and 31 to produce the circuit of figure B15.4.

fig. B15.4
- photoresistors are made from semiconductor materials, so they are sensitive to temperature. To minimize the thermal effect of the lamp on the component, we suggest you carry out the measurement quickly, starting with the lamp at the closest distance to the photoresistor, and then progressively moving it away
- note the change in resistance as the light source is moved away

Q1 What happens to the resistance?

SET

A B
13 the resistance increases
24 the resistance stays constant
31 the resistance drops
$4 \quad 5$ the resistance stays constant at zero
52 the resistance stays constant, and is infinite
The light intensity striking the photoresistor is proportional to the power from the light source, and so to its distance. Clearly the closer the source, the higher is the intensity on the photoresistor. Qualitatively, the result is similar to that shown in figure B15.1.

Light-current characteristic of the photodiode

- Connect jumper J39 and the voltmeter across the resistance R20 (figure B15.5)

fig. B15.5
- When light falls on the surface of a photodiode, the diode behaves as a current generator, i.e. it "supplies" a reverse current proportional to the light intensity across it. The voltage across R_{20} is proportional to the current through it, and hence to photodiode illumination.
- move the lamp close to the photodiode and measure the voltage across R_{20}
- move the light source further away and repeat the measurements

Q2 What happens to the measured voltage as the distance increases?

SET

$A \quad B$
14 the voltage increases
21 the voltage stays constant
32 the voltage drops
45 the voltage remains at zero
53 the voltage stays constant at 12 V

Phototransistor operation

- Connect jumper J39 and the voltmeter as in figure B15.6

- measure the collector voltage with lamp off and check if the transistor conducts (with the lamp off, and with no light, the phototransistor should be cut off and so the voltage reading should be close to +12 V)
- turn on the lamp and place it close the phototransistor; measure the collector voltage

Q3 What happens to the voltage when the light is on?

SET

$A \quad B$
15 the voltage stays constant
21 the voltage drops
$3 \quad 4$ the voltage increases
42 the voltage remains at zero
53 the voltage remains at 12 V

On-board SIS1	Turn switch S9 ON
SIS2	Press "INS"

Q4 In these conditions, is it possible to make the phototransistor conduct?

SET

$A \quad B$
14 no, because the power supply has been disconnected
23 no, because the base-emitter junction of the phototransistor is short-circuited
31 no, because the lamp does not have the necessary power
42 no, because there is a high resistance connected to the emitter

B15.3 SUMMARY QUESTIONS

Q5 A photoresistor is made from :
SET
A B
13 a P-N junction
24 a layer of semiconductor material
32 a metal
45 an insulating material
51 a metal-semiconductor junction

Q6 What part of the electromagnetic radiation spectrum is the photoresistor sensitive to?

SET
A B
13 infrared
21 visible
34 ultraviolet
45 radio waves
52 gamma rays

Q7 A photodiode consists of:

SET	
$A \quad B$	
4	a metal
21	a layer of semiconductor material
32	a P-N junction
5	a junction between two metals
53	none of the above

Q8 In normal applications a photodiode :

SET

$A B$
12 is not biased
2 1 is forward biased
$3 \quad 4$ is reverse biased
43 is biased with an a.c. voltage

Q9 Where is the light radiation concentrated, in a phototransistor?

SET

$A \quad B$
13 onto the collector
2 onto the collector-base junction
35 onto the base
$4 \quad 2$ onto the base-emitter junction
54 onto the emitter

Q10 In the dark the phototransistor collector current is:

SET

$A \quad B$
12 zero
24 determined by the leakage current of the C-B junction generated by thermal effects
31 determined by the leakage current of the B-E junction generated by thermal effects.
43 determined by the collector-emitter voltage

LESSON B16: TEMPERATURE TRANSDUCERS

OBJECTIVES

- To study the resistance-temperature characteristic of a thermistor

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PSI-PSU/EV or PSLC/EV, module holder structure mod. MU/EV), Individual Control Unit mod.SIS1/SIS2/SIS3 (optional).
- experiment module mod.MCM4/EV
- multimeter

B16.1 BASIC THEORY

Thermistors are semiconductor devices whose resistance depends on temperature.

The thermoresistive effect in semiconductors is very different to the effect in metals.
In semiconductors, not only the mobility, but - more importantly - the number of carriers changes with temperature. At low temperatures electrons and holes do not have sufficient energy to pass from the valence band into the conduction band

Increasing the temperature however, gives the carriers enough energy to overcome the gap between the two bands, so the conductivity increases with temperature. In other words, when the temperature increases so does the conductivity, and consequently the resistance of the material drops.

Semiconductors have a NTC (negative temperature coefficient) of resistance. For an NTC material the law connecting the resistance to temperature is given by:
$R_{1} / R_{2}=e^{B \cdot(1 / T 1-1 / T 2)} \quad B=W_{b} / K$
where:

- R_{1} and R_{2} are the resistances at temperatures T_{1} and T_{2} respectively
- W_{b} is the energy of the band gap
- K is the Boltzmann constant.

Typical values for B range between $2000^{\circ} \mathrm{K}$ and $5600^{\circ} \mathrm{K}$.
The first formula gives:

$$
B=\frac{\ln \left(R_{1} / R_{2}\right)}{1 / T_{1}-1 / T_{2}}
$$

Figure B16.1 shows a graph of the resistance dependence on temperature for NTC materials with different values of B.

Finally, note that thermosensitive devices can be produced with positive temperature coefficients, and so they are called PTC (positive temperature coefficient) materials.

fig. B16.1

B16.2 EXERCISES

MCM4	Disconnect all jumpers
on-board SIS1	Turn all switches OFF
SIS2	Insert lesson code: B16

Resistance-temperature characteristic of a thermistor

- Produce the circuit in figure B16.2, connecting the ohmmeter between points 26-27

fig.B16.2
- Measure the resistance of the thermistor at ambient temperature
- Connect resistance to the power supply voltage by inserting jumper J38
- Note the behavior of the resistance as indicated by the meter, as R_{19} warms up

Q1 How does the thermistor resistance change as the temperature increases?

SET
$A \quad B$
1 it stays constant
23 it drops
$3 \quad 1$ it drops by a small amount and then increases
42 it increases
$\begin{array}{ll}5 & 6\end{array}$ it remains at zero
$6 \quad 4 \quad$ it becomes infinite

on-board SIS1	Turn switch S7 ON
SIS2	Press "INS"

Q2 What has happened to the circuit?

SET

$A \quad B$
14 resistance R_{19} has been cooled
25 the power to R_{19} has been disconnected
32 the thermistor has been disconnected
$4 \quad 1 \quad$ a resistance has been put in parallel with the thermistor
53 a low value resistance has been put in series with the thermistor

© on-board SIS1

Turn switch S7 OFF

- Disconnect J38 and wait for the resistance and thermistor to cool.
- Now connect the ohmmeter between points 28-29 to measure the resistance of a PTC thermistor at ambient temperature
- Connect J38 once more and observe the ohmmeter as the temperature rises

Unlike the previous case, you should find that the resistance of the PTC increases with temperature. However the temperature coefficient is positive only within a limited temperature range; outside it, the coefficient is negative. A typical behavior is shown in figure B16.3.

fig. B16.3

B16.3 SUMMARY QUESTIONS

Q3 A thermistor is made from :

SET		
A	B	
1	2	a conductor
2	3	a semiconductor
3	5	a p-n junction
4	1	a junction of two metals
5	4	an insulating material

Q4 The resistance-temperature characteristic of a NTC thermistor is:
SET
$A \quad B$
15 linear
24 quadratic
$3 \quad 2$ exponential
43 logarithmic
51 parabolic

Q5 The resistance of an NTC thermistor:

SET

$A \quad B$
$1 \quad 4 \quad$ drops as the temperature increases
23 increases as the temperature increases
$3 \quad 2$ increases as the temperature increases up to $0^{\circ} \mathrm{C}$, then drops
45 drops as the temperature increases up to $0^{\circ} \mathrm{C}$ and then increases
51 remains constant as the temperature is varied

Q6 In a PTC device what happens to the resistance when the temperature increases?

SET
$A \quad B$
13 it increases
25 it drops
34 first it increases and then it drops
$4 \quad 1 \quad$ first it drops and then it increases
$5 \quad 2$ it remains constant

LESSON B17: AMPLIFIER CONFIGURATIONS

OBJECTIVES

- To analyze the different configurations (Common Base/ Emitter/Collector)
- To note the behavior of the characteristic curves
- To calculate the static current gain

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV or PSLC/EV, module holder structure mod. MU/EV), Individual Control Unit mod.SIS1/SIS2/SIS3 (optional)
- experiment module mod.MCM4/EV
- oscilloscope
- multimeter

B17.1 BASIC THEORY

A transistor amplifier can be connected in three different ways or configurations. These configurations are called the "common emitter", "common collector" or "common base", depending on which terminal is set to ground. That terminal is then the common reference for output and input.

Common Emitter Amplifier

As seen in fig. B17.1, the signal to be amplified is applied to the base terminal and the amplified output is taken from the collector.

If the applied voltage $V_{B E}$ increases, the current I_{B} also increases, and so does the current $\mathrm{I}_{\mathrm{C}}\left(\right.$ as $\left.\mathrm{I}_{\mathrm{C}}=\mathrm{h}_{\mathrm{FE}} \cdot \mathrm{I}_{\mathrm{B}}\right)$.

This increase of I_{C} increases the voltage $V_{R C}$ and, as $V_{R C}=V_{C C}-V_{C E}$, the output voltage V_{CE} decreases. Similarly when V_{BE} decreases, V_{CE} increases.

We see that:

- the amplifier is inverting, i.e. if the input voltage increases, the output voltage decreases and vice versa
- the voltage amplification rises as the value of R_{C} increases, as a variation in I_{C} produces a voltage variation which goes up as R_{C} increases.

A common emitter amplifier is the only one with a high current and voltage gain, and so the power amplification is very high (as $\mathrm{P}=\mathrm{V} \cdot \mathrm{I}$).

figure B17.1 Common Emitter amplifier

figure B17.2 Common Collector amplifier

figure B17.3 Common Base amplifier

Common collector amplifier

In this configuration (fig.B17.2), the collector is the common terminal as it is the only one among the three which is linked to a fixed voltage (V_{CC}). However, for ease of reference, the input signal applied to the base and the output signal taken from the emitter are referred as usual, to the ground of the circuit (and not to the collector)

As V_{BE} is almost constant in a conducting transistor, any rise or fall of $\mathrm{V}_{\text {IN }}$ is transferred onto the emitter and so at the output we have:

$$
V_{\text {OUT }}=V_{\text {IN }}-V_{B E} .
$$

As a result :

- the amplifier is non inverting. If $\mathrm{V}_{\text {IN }}$ increases, $\mathrm{V}_{\text {out }}$ increases, too
- the voltage amplification is equal to 1 , i.e. the emitter voltage variation is equal to the base variation. This configuration is also called an emitter follower, because the output follows the input.

The common collector amplifier does not at first seem to be of much use, as it does not amplify the input voltage. However it is widely used, because it has high input impedance and a low output impedance. Consequently it can handle input signals from a source of high impedance, and still deliver an ouput to a low impedance load. In other words, it is an impedance matcher.

Common Base Amplifier

In this configuration, whose general features are seen in fig. B17.3, the signal to be amplified is applied to the emitter and the amplified output is taken from the collector.

When the input voltage V_{EB} (which must always be negative) increases, this means that $V_{B E}$ drops, the current I_{B} increases, too, and so does the current I_{C}. As $\mathrm{V}_{\mathrm{CB}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{R}_{\mathrm{C}} \cdot \mathrm{I}_{\mathrm{C}}$, the output voltage increases.

Similarly, when $V_{E B}$ drops, $V_{C B}$ drops, too.
Note that:

- the amplifier is non inverting
- the voltage gain is proportional to the value of R_{C}
- the input circuit, as it is crossed by the emitter current I_{E}, has a very low impedance.

This configuration is particularly used in radio frequency circuits as the input impedance, in the order of tens of Ohm, matches the 50 Ohm characteristic impedance of antennas and transmission lines.

The following table gives the expressions related to the characteristic parameters of the three typical amplifier configurations of transistors, where:

- R_{S} is the output resistance of the signal to be amplified ($\mathrm{s}=$ source)
- r_{e} is a parameter which is approx. $25 \mathrm{mV} / \mathrm{I}_{\mathrm{E}}$.

	Common emitter	Common collector	Common base
Input impedance $R_{\text {IN }}$	$\beta \cdot r_{e}-$ low	$\beta \cdot R_{E}-$ very high	r_{e} - very low
Output impedance $\mathrm{R}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{C}}-$ high	$\left(\mathrm{R}_{\mathrm{S}} / \beta\right) / / \mathrm{R}_{\mathrm{E}}-$ very low	$\mathrm{R}_{\mathrm{C}}-$ high
Current gain (maximum) Ai	$\beta-$ high	$\beta-$ high	unity
Voltage gain Av	$\mathrm{R}_{\mathrm{C}} / \mathrm{r}_{\mathrm{e}}-$ high	unity	$\mathrm{R}_{\mathrm{C}} / \mathrm{r}_{\mathrm{e}}-$ high
Power gain A_{P}	Ai•Av-very high	Ai - high	$\mathrm{Av}-$ high
Phase relation between $\mathrm{V}_{\text {IN }}$ and $V_{\text {OUT }}$	180°	0°	0°

B17.2 EXERCISES

\rightarrow MCM4	Disconnect all jumpers
on-board SIS1	Turn all switches $O F F$
SIS2	Insert lesson code: B17

Voltage and current measurements will be required on some circuits. If only a single multimeter is available, this will be used sometimes as a voltmeter or at other times as ammeter. When used as a voltmeter, remember to short-circuit the points of the circuit where the ammeter would be inserted.

Common emitter circuit

Curve $V_{B E}=f\left(I_{B}\right)$ with $V_{C E}$ held constant

- Connect jumpers J1, J8, J6, the ammeter between 3-4 and the voltmeter (or the oscilloscope) between 4-8 to produce the circuit of fig.B17.4

fig.B17.4
- measure the voltage $V_{B E}$ for each value of the current I_{B} shown in the table:

$\mathrm{I}_{\mathrm{B}}[\mu \mathrm{A}]$	0	5	10	20	40	80	100	300	500
$\mathrm{~V}_{\mathrm{BE}}[\mathrm{mV}]$									

- Plot the characteristic curve $\mathrm{V}_{\mathrm{BE}}=\mathrm{f}\left(\mathrm{I}_{\mathrm{B}}\right)\left(\mathrm{I}_{\mathrm{B}}\right.$ horizontal axis, see example in the next figure)

Q1 The curve produced has a characteristic similar to a :

SET

$A \quad B$
13 resistance
24 UJT
$3 \quad 2$ diode
$4 \quad 6 \quad$ PTC
$5 \quad 1 \quad$ SCR
65 NTC

- calculate, at some point on the linear conduction region of the baseemitter junction, the static input resistance: $\mathrm{R}_{\mathrm{IE}}=\mathrm{V}_{\mathrm{BE}} / \mathrm{I}_{\mathrm{B}}$
- you should obtain a value of some thousands of Ohms for R_{IE}. A common emitter circuit has an average value for its static input resistance.

Curve $I_{C}=f\left(V_{C E}\right)$ for constant I_{B}

- Connect jumpers $\mathrm{J} 2, \mathrm{~J} 6, \mathrm{~J} 8$, and the meters as indicated in fig.B17.5. The voltage V_{CE} can also be measured with an oscilloscope

fig.B17.5
- adjust V_{CC} to 0 V , and I_{B} to $20 \mu \mathrm{~A}$
- increase the variable voltage V_{CC}. Measure the collector current I_{C} for the values of V_{CE} shown in the following table:

V_{CE} [V]	0.1	0.5	1	5	8	
I_{C} [mA]						$\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}$
						$\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}$
						$\mathrm{I}_{\mathrm{B}}=80 \mu \mathrm{~A}$

- Plot a curve $I_{C}=f\left(V_{C E}\right)$ for each value of I_{B}, and describe the behavior.

The collector current I_{C} increases rapidly with the voltage V_{CE} (when this is low), to become a linear,(almost horizontal), function of V_{CE} and proportional to the base current I_{B}. For small values of I_{B}, the curves are parallel in the linear region. For values of I_{B} over mA , the current I_{C} tends to take values proportional to the collector voltage V_{CE}. In the linear region the static output resistance is high.

- For $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ calculate, from the previous table, the static current gain $\mathrm{h}_{\mathrm{FE}}=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ for each pair of values ($\mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{B}}$). Complete the following table with the data:

$\mathrm{I}_{\mathrm{B}}[\mu \mathrm{A}]$	20	40	80
$\mathrm{I}_{\mathrm{C}}[\mathrm{mA}]$			
h_{FE}			

The value found depends on I_{C}, and in particular it gradually increases with I_{C} to a certain value, dependent on the transistor, then finally it decreases.

on-board SIS1	Turn switch S2 ON
SIS2	Press "INS"

Q2 From measurements of the currents and voltages on the transistor we can say that:

SET

$A B$
15 a higher resistance R_{C} has been inserted
23 the V_{CE} has been increased by changing V_{CC}
$3 \quad 4$ the base-emitter junction has been short-circuited
42 a resistance has been inserted in series with the emitter and the circuit is not a common emitter anymore
51 the emitter circuit is open-circuit and so I_{C} has been reduced to zero

© on-board SISI
 Turn switch S2 OFF

Common base circuit

Curve $V_{E B}=f\left(I_{E}\right)$ with $V_{C B}$ held constant

- Connect the instruments as shown in the diagram of fig.B17.6. The voltages can also be measured with the oscilloscope

fig.B17.6
- keeping V_{CB} constant at 0.5 V , measure the emitter voltage V_{EB} for the values of IE given in the next table, and obtained by adjusting RV2

| $\mathrm{V}_{\mathrm{CB}}=0.5 \mathrm{~V}$ | $\mathrm{I}_{\mathrm{E}}[\mathrm{mA}]$ | 0 | 0.05 | 0.1 | 0.3 | 0.5 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{~V}_{\mathrm{BE}}[\mathrm{mV}]$ | | | | | | |

- plot the input characteristic $V_{E B}=f\left(I_{E}\right)$ for $V_{C B}=0.5 \mathrm{~V}$.

Q3 What is the input resistance for this configuration, in the linear region ?

SET
$A \quad B$
$1 \quad 2$ it is very high
$2 \quad 4$ it depends on I_{C} and takes very different values
31 it is less than $1 \mathrm{~K} \Omega$
45 it remains at zero
53 it is infinite

Curve $I_{C}=f\left(V_{C B}\right)$ for constant I_{E}

- Set Vcc to 0 V and I_{E} to 3 mA initially, by adjusting RV2
- Increase Vcc and calculate the collector current I_{C}, by measuring the voltage across resistance R 4 (1 Kohm), for each value of V_{CB} in the following table:

$\mathrm{V}_{\text {Св }}[\mathrm{V}]$		0	1	2	3	$\mathrm{I}_{\mathrm{E}}(\mathrm{mA})$
$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$					3	
					1	

- repeat these measurements for $I_{E}=1 \mathrm{~mA}$
- draw the curve of $\mathrm{I}_{\mathrm{C}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{CB}}\right)$
- compare the results of the output characteristics for the common base and common emitter connection
- calculate from the linear region of the curve $\mathrm{I}_{\mathrm{C}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{CB}}\right)$ the static output resistance: $\mathrm{R}_{\mathrm{OB}}=\mathrm{V}_{\mathrm{CB}} / \mathrm{I}_{\mathrm{C}}$ on the characteristic at $\mathrm{I}_{\mathrm{E}}=3 \mathrm{~mA}$.

Q4 What is the calculated output resistance?

SET

A B
15 it is zero
21 it lies between 10 and 100Ω
32 approx. $100 \mathrm{~K} \Omega$
43 it lies between $1 \mathrm{~K} \Omega$ and $10 \mathrm{~K} \Omega$
54 over $10 \mathrm{M} \Omega$

Common collector circuit

Curve $V_{C B}=f\left(I_{B}\right)$ for constant $V_{C E}$

- Connect jumpers J1, J6, J7, J4, and the meters as in the circuit of figure B17.7. The voltages can also be measured with the oscilloscope

fig.B17.7
- adjust Vcc to obtain $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
- vary RV1 to obtain the current values I_{B} shown, keeping $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ constant. Measure the voltage $V_{C B}$ for each value of I_{B} :

$\mathrm{I}_{\mathrm{B}} \quad[\mu \mathrm{A}]$	0	5	10	30	50	$\mathrm{V}_{\mathrm{CE}}[\mathrm{V}]$
$\mathrm{V}_{\mathrm{CB}}[\mathrm{V}]$						5
						10

- repeat these measurements for $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$
- plot the characteristic input curves for each value of V_{CE} and describe their behavior

The curve $V_{\mathrm{CB}}=f\left(I_{\mathrm{B}}\right)$ depends on V_{BE}, and between B and E there is basically a diode. Once the base emitter junction is forward biased V_{BE} is constant at about 0.7 V , so V_{CB} is constant, and equal to ($V_{\mathrm{CE}}-V_{\mathrm{BE}}$)

- using the equation $\mathrm{R}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CB}} / \mathrm{I}_{\mathrm{B}}$ calculate the input resistance, R_{IC}

Q5 What is the calculated input resistance of the common collector circuit ?

SET

A B
13 zero
21 in the order of 100Ω
34 in the order of $100 \mathrm{~K} \Omega$
45 around $1 \mathrm{M} \Omega$
52 infinite

Curve $I_{E}=f\left(V_{E C}\right)$ for constant I_{B}
The following measurements can only be made if two ammeters and a voltmeter are available.

- Connect jumpers $\mathrm{J} 2, \mathrm{~J} 7, \mathrm{~J} 4$, and the meters to produce the circuit of figure B17.8

fig.B17.8
- adjust Vcc to 0 V and I_{B} to $80 \mu \mathrm{~A}$. Gradually increasing Vcc, measure the emitter current I_{E} for each value of V_{CE} in the next table

| $\mathrm{V}_{\mathrm{CE}}[\mathrm{V}]$ | | 0 | 0.1 | 0.3 | 0.5 | 1 | 5 | 10 | $\mathrm{I}_{\mathrm{B}}[\mu \mathrm{A}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{I}_{\mathrm{E}}(\mathrm{mA})$ | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| 50 | | | | | | | | | |

- Repeat the measurements for $\mathrm{I}_{\mathrm{B}}=50 \mu \mathrm{~A}$
- Plot the characteristic output curve for each value of I_{B}

From the graphs you can note that, when the transistor starts conducting, I_{E} remains almost constant if V_{CE} is more than about 0.5 V .

B17.3 SUMMARY QUESTIONS

Q6 How many possible connections, or configurations are there for a transistor?

SET

A	B	
1	4	1
2	1	2
3	6	3
4	5	4
5	2	5
6	3	6

Q7 Which are the input parameters for an NPN transistor with common base connection?

SET

A B
$13 \quad \mathrm{~V}_{\mathrm{BE}}, \mathrm{I}_{\mathrm{B}}$
$21 \quad V_{B C}, I_{B}$
$32 \quad \mathrm{~V}_{\mathrm{EB}}, \mathrm{I}_{\mathrm{E}}$
$4 \quad 5 \quad \mathrm{~V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}$
$54 \quad V_{E C}, I_{B}$

Q8 Which are the input parameters for a PNP transistor connected in a common collector configuration?

SET

A	B	
1	3	$\mathrm{~V}_{\mathrm{BE}}, \mathrm{I}_{\mathrm{B}}$
2	1	$\mathrm{~V}_{\mathrm{BC}}, \mathrm{I}_{\mathrm{B}}$
3	5	$\mathrm{~V}_{\mathrm{EB}}, \mathrm{I}_{\mathrm{E}}$
4	2	$\mathrm{~V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}$
5	4	$\mathrm{~V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{B}}$

Q9 Which are the output parameters a NPN transistor in common collector connection:

$l l$	SET			
A	B			
1	2	$V_{C B}, I_{C}$		
2	3	$V_{E C}, I_{E}$		
3	5	$V_{C E}, I_{C}$		
4	1	$V_{C E}, I_{B}$		
5	4	$V_{B E}, I_{B}$		

LESSON B18: TRANSISTOR BIASING

OBJECTIVES

- To determine the operating point and its position on the load line
- To understand class A, B and C biasing

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV or PSLC/EV, module holder structure mod. MU/EV), Individual Control Unit mod.SIS1/SIS2/SIS3 (optional)
- experiment module mod.MCM4/EV
- oscilloscope
- multimeter
- function generator

B18.1 BASIC THEORY

To bias a transistor means to fix the dc voltages and the currents so that they take a certain value, which corresponds a well defined point called the "Q", "quiescent" or "operating" point of the circuit.

The bias network consists of a number of components connected to the active device, to ensure its operation at the required point.

Biasing of a common emitter transistor

Circuit and output characteristic

A bias circuit for a common emitter amplifier is shown in figure B18.1. The external components are chosen so as to fix the variables $\mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{B}}$ to the required values. The three values, $\mathrm{I}_{\mathrm{CQ}}-\mathrm{V}_{\mathrm{CEQ}}-\mathrm{I}_{\mathrm{BQ}}$, define the " Q point" of the transistor.

figure B18.1

figure B18.2

Determining the bias components

To work out the component values needed to bias a transistor correctly, two methods can be used: a graphical one using the characteristic curves, or an analytical one.

Analytical method

Graphical method

The "load line" of a bias circuit is defined as the line on the output characteristic of the transistor connecting the point ($\mathrm{V}_{\mathrm{CEM}}, 0$) to the point $\left(0, \mathrm{I}_{\text {Csat }}\right) . V_{\text {CEM }}$ is the max. voltage between collector and emitter, and is equal to the power supply voltage Vcc , and $\mathrm{I}_{\mathrm{Csat}}$ is the max. collector current, called "saturation current" ($\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Csat}}$ for $\mathrm{V}_{\mathrm{CE}}=0$ Volt).

1. mark the "Q" point on the output characteristic
2. the value of $\mathrm{I}_{\text {Csat }}$ is determined, by drawing the load line to cut through the Q point and $\left(\mathrm{V}_{\mathrm{CEM}}, 0\right)$ (figure B 18.3)
3. the collector resistance R_{C} is calculated from the formula for the equation of the load line $\left(\mathrm{Vcc}=\mathrm{V}_{\mathrm{CE}}+\mathrm{R}_{\mathrm{C}} \cdot \mathrm{I}_{\mathrm{C}}\right)$:

$$
\mathrm{R}_{\mathrm{C}}=\mathrm{Vcc} / \mathrm{I}_{\mathrm{Csat}}
$$

4. the value of $I_{B Q}$ is found from the output characteristic, where the curve $I_{C}=f\left(V_{C E}\right)$ crosses the Q point $\left(I_{C Q}, V_{C E Q}\right)$
5. the value of $\mathrm{V}_{\mathrm{BEQ}}$ which corresponds to I_{BQ} is determined from the input characteristic $V_{B E}=f\left(I_{B}\right)$
6. R_{B} is calculated using the equation relating the base and emitter voltages
$V_{B B}=V_{B E}+R_{B} \cdot I_{B}$, from which
$R_{B}=\left(V_{B B}-V_{B E Q}\right) / I_{B Q}$
B18.5

Operating regions of the transistor

In the output characteristic $I_{C}=f\left(V_{C E}\right)$ we can define three different operating regions of the transistor (fig.B18.4):

- region I: V_{BE} is equal to 0 Volt and I_{C} takes very low values; V_{CE} depends only on the power supply voltage Vcc. In these operating conditions the transistor is "cut off " or "blocked"
- region I : I_{C} is a linear function of I_{B} and is practically independent of V_{CE}. In these conditions the transistor is in its "active" region
- region III: V_{CE} takes very low values and I_{C} depends only on the power supply voltage and the collector resistance $\mathrm{R}_{\mathrm{C}}\left(\mathrm{I}_{\mathrm{Csat}}=\mathrm{Vcc} /\right.$ R_{C}). The transistor is fully on or in its "saturation" region.

fig.B18.4

Bias circuit with a single power supply

The circuit of figure B18.1 can be obtained with a single power supply using a suitable potential divider (figure B18.5). The previous formulae for the determination of the Q point remain valid if the following substitutions are used:
$\mathrm{V}_{\mathrm{BB}}=\mathrm{Vcc} \cdot \mathrm{R} 2 /(\mathrm{R} 2+\mathrm{R} 1) \quad \mathrm{B} 18.6$
$\mathrm{R}_{\mathrm{B}}=\mathrm{R} 1 \cdot \mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)$
B18.7
$\mathrm{R} 1=\mathrm{R}_{\mathrm{B}} \cdot \mathrm{Vcc} / \mathrm{V}_{\mathrm{BB}} \quad \mathrm{B} 18.8$
$\mathrm{R} 2=\mathrm{R}_{\mathrm{B}} \cdot \mathrm{Vcc} /\left(\mathrm{Vcc}-\mathrm{V}_{\mathrm{BB}}\right) \quad \mathrm{B} 18.9$

fig.B18.5

Classes of Operation

Transistor amplifier circuits can be classified using the general transfer characteristic as shown in figure B18.6.

fig.B18.6
The signals to be amplified are normally time variable (ac). In some applications, only a part of the input wave is to be amplified; this is possible if a suitable point on the characteristic is chosen. The different operating modes can be put into three categories, called "class A", "class B " and "class C".

Class A

The operating point in the class A is located in the center of the straight section of the transfer curve. In this case, if base current excursions (caused by the input signal) stay within the linear region, the wave-
form across the output of the amplifier faithfully reproduces that of the input signal.
It follows that the collector current flows for the entire duration of the input signal cycle, and its average value is constant, and equal to that in the Q state. Figure B18.7 shows an example of amplification with a transistor biased for class A operation.

fig.B18.7
As the linear range over which the base and collector currents can vary is limited, it follows that it is not possible to "extract" all the power possible from the transistor. This max. power corresponds to the max. excursion possible of the collector current, i.e. from zero to saturation. The result is that the efficiency of the amplifier, defined as the ratio between the power supplied to the output (Po) and the power taken from the supply $\left(\mathrm{Vcc} \cdot \mathrm{I}_{\mathrm{CQ}}\right)$, is very low.

Class B

In this case, the Q point is placed close to the cut-off point of the transistor, so the collector current is very low (with no input signal). In the presence of a signal the current flows only during the positive part of the applied signal. The negative part of the input signal is less than the cut off value, and causes a complete cut-off of the collector current. Figure B18.8 shows this class B method of operation.

fig.B18.8

With an alternating signal, the collector current flows only for half a period, i.e. 180 degrees. This angle is called the conduction angle. To reconstruct the signal requires two transistors, conduct alternately: one for each half cycle. The typical efficiency of the class B operation is higher than class A.

Class C

In class C, the operating point is moved even lower than the cut-off point. The transistor supplies an output signal only if the input signal is at some point sufficiently large to exceed the cut off threshold. The conduction angle is further reduced compared to class B , being even less than 180 degrees. The collector current pulses are very narrow, with a duration less than half a period long. Figure B18.9 shows an example of class C amplification.

fig.B18.9

Although a class C amplifier produces a huge distortion in the output signal, it can operate with high efficiency.

B18.2 EXERCISES

\rightarrow MCM4	Disconnect all jumpers
on-board SIS1	Turn all switches $O F F$
SIS2	Insert lesson code: $B 18$

Voltage and current measurements will be required on some circuits. If only a single multimeter is available, this will be used sometimes as a voltmeter or at other times as ammeter. When used as a voltmeter, remember to short-circuit the points of the circuit where the ammeter would be inserted.

Voltage and current measurements at the operating (Q) point

- Produce the circuit of fig.B18.10, connecting the jumpers J2, J6, J8 and the meters. The voltage measurement can be made with the oscilloscope

Fig.B18.10

- adjust Vcc to 20 V , and using RV1, set I_{B} to 0
- increase I_{B} to obtain $I_{C} \approx 20 \mathrm{~mA}$ and $V_{C E} \approx 10 \mathrm{~V}$

These settings bias the transistor at a Q point defined by:

- $\mathrm{I}_{\mathrm{BQ}} \approx 100 \mu \mathrm{~A}$
- $\mathrm{I}_{\mathrm{CQ}} \approx 20 \mathrm{~mA}$
- $\mathrm{V}_{\mathrm{CEQ}} \approx 10 \mathrm{~V}$
- from the load line equation $\mathrm{Vcc}=\mathrm{V}_{\mathrm{CEQ}}+\mathrm{R} 2 \cdot \mathrm{I}_{\mathrm{CQ}}$, calculate the saturation current $\mathrm{I}_{\text {Csat }}$
- check this result practically by varying I_{B} with RV1. To determine the saturation current $\mathrm{I}_{\text {Csat }}$, try to make $\mathrm{I}_{\mathrm{B}}>0.1 \mathrm{~mA}$.
- Determine the cut-off voltage $\mathrm{V}_{\text {CEM }}$ also, doing your best to make $\mathrm{I}_{\mathrm{B}}=0$

Q1 What is the voltage $V_{\text {CE }}$ in saturation conditions ($V_{\text {CEsaat }}$?

SET

A	B	
1	4	10 V
2	5	7 V
3	6	2 V
4	2	5 V
5	3	1 V
6	1	0.2 V

Class A amplifier

- Connect jumpers $\mathrm{J} 10, \mathrm{~J} 11, \mathrm{~J} 14, \mathrm{~J} 16$, and the ammeter between points 20 and 21 as in figure B18.11.
- Adjust the function generator for a sine signal with amplitude 0 mV peak-to-peak and 1 KHz -frequency.

fig. B18.11
- set $\mathrm{Vcc}=20 \mathrm{~V}$ and adjust RV 3 to obtain $\mathrm{I}_{\mathrm{CQ}} \approx 10 \mathrm{~mA}$

With no signal from generator G, the channel 2 of the oscilloscope displays a constant voltage equal to $\mathrm{V}_{\mathrm{CEQ}}+\mathrm{R} 10 \cdot \mathrm{I}_{\mathrm{CQ}}$

- progressively increase the amplitude of the signal supplied by the generator, until there is 50 mV peak-to-peak on channel 1 of the oscilloscope
- note the output voltage on channel 2

Q2 What is the behavior of the output signal?

SET

A B
13 the signal is a sine wave overlaid on a d.c. bias component
25 the signal is sine wave with zero average value
31 the signal is triangular wave
$4 \quad 2$ the signal is square-wave
54 the signal is sine wave with frequency double that of the input signal

Due to the signal applied to the Base of the transistor, we can say that the instantaneous Q point "moves" along the load line, producing a variable signal vce across the output. The excursions of the Q point on the load line are symmetrical with respect to the bias values $\mathrm{V}_{\text {CEQ }}$ and I_{CQ}.

- Move the channel 2 of the oscilloscope to the other side of capacitor C 2 , and display the output signal again

You will see that capacitor C2 enables us to decouple the output signal, that is to remove the dc component $\mathrm{V}_{\mathrm{CEQ}}$

- Increase the amplitude of the input signal, and note the behavior of the output signal on the oscilloscope

When the input voltage increases, the output signal has distortions, due to the fact that the excursions of the Q point then reach the saturation regions

Q3 To obtain the max. signal without distortion at the output, what should $\mathrm{V}_{\mathrm{CEQ}}$ be, in theory?

```
SET
A B
1 6 2.Vcc
2 1 Vcc-R9 午O
3 4 Vcc
4 2 Vcc/2
5 3 Vcc/4
6
```


Amplifiers in class B and C

- In the circuit of fig.B18.11, adjust I_{CQ} to about 5 mA by means of RV3
- adjust the function generator for a sine wave signal with 50 mV amplitude peak-to-peak and 1 KHz frequency
- set channel 2 of the oscilloscope to DC
- slowly increase the bias voltage $\mathrm{V}_{\mathrm{CEQ}}$ and reducing I_{BQ}, observing the behavior of the output voltage at the collector

Q4 How does the displayed signal change?

SET

A B
15 the signal becomes triangular
23 the signal is zero
$3 \quad 4$ the signal doubles its frequency
$4 \quad 1$ the signal becomes square-wave
52 the signal becomes distorted

This is because the transistor starts entering cut-off. If I_{BQ} continues to decrease, you will see a signal corresponding only to the positive half-waves of the input signal, which may raise the Q point above the cut-off region of the transistor.

The circuit now operates in class B, and so only the positive half waves of the input signal are amplified.

- reduce I_{BQ} again, and check the voltage across the transistor

For a low value of I_{BQ} the output signal can become zero, if the input signal does not have sufficient amplitude to take the transistor outside the cut-off region. If the circuit amplifies only a small part of the positive half wave (conduction angle $<180^{\circ}$), then the operation is in class C .

B18.3 SUMMARY QUESTIONS

Q5 What does it mean to bias a transistor?

SET

$A \quad B$
14 to adjust the parameters I_{B}, Vcc and R_{C} to obtain the max. voltage and current gain
23 to adjust a circuit so that, at the operating point, the values of the output voltage and current are independent of the input ones
35 to adjust a circuit so that, at the operating point, the output and input voltages and currents take fixed values
41 to eliminate the dependence of the circuit's operation on temperature
52 to take the power supply voltage of the circuit to the optimum
value value

Q6 The operation class of an amplifier depends on:
SET
$A \quad B$
$1 \quad 3$ the device used
24 the amplification value
35 the excursion of the signal which is needed
$4 \quad 1$ the power supply voltage
$5 \quad 2$ the biasing
Q7 In a common emitter amplifier, the Q point $\left(\mathrm{V}_{\mathrm{CEQ}}, \mathrm{I}_{\mathrm{CQ}}\right)$ and the power supply voltage Vcc are known. What is the collector resistance R_{C} ?

SET
$A \quad B$
$\begin{array}{lll}1 & 4 & \left(\mathrm{Vcc}-\mathrm{V}_{\mathrm{CEQ}}\right) / I_{\mathrm{CQ}}\end{array}$
$23\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{BEQ}}\right) / \mathrm{I}_{\mathrm{BQ}}$
$3 \quad 1 \quad \mathrm{~V}_{\mathrm{CEQ}} / \mathrm{I}_{\mathrm{CQ}}$
$4 \quad 5 \quad \mathrm{Vcc}-\mathrm{V}_{\mathrm{BB}} / \mathrm{I}_{\mathrm{BQ}}$
$52 \quad \mathrm{Vcc}-\mathrm{V}_{\mathrm{BB}} / \mathrm{I}_{\mathrm{CQ}}$
Q8 A single transistor amplifier produces an output signal which faithfully represents the input signal. What is its operating class?

SET

$A \quad B$
12 A
23 B
45 A-B
54 A-C

LESSON B19: Q POINT STABILIZATION

OBJECTIVES

- To study the self-heating effect of the collector current I_{C} and the effect of temperature on the base-emitter voltage V_{BE}
- To measure the gain variation in a common emitter amplifier with an emitter resistor
- To vary the output resistance of a circuit with collector-base resistance
- To stabilize the effect of the collector-base resistance

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV or PSLC/EV, module holder structure mod. MU/EV), Individual Control Unit mod. SIS1/SIS2/SIS3 (optional).
- experiment module mod.MCM4/EV
- oscilloscope
- multimeter
- function generator

B19.1 BASIC THEORY

The Q point of a transistor can vary due to:

- temperature
- aging
- replacing the component (the characteristics of transistors, even of the same type have a large statistical spread).

Thermal effects

The collector current causes a power dissipation which results in an increase of the junction temperature.

The collector leakage current $\mathrm{I}_{\text {CBO }}$ is proportional to the junction temperature: we can say that it doubles for every 10° rise in temperature. As the collector current I_{C} is equal to $\mathrm{I}_{\mathrm{CBO}}+\alpha \cdot \mathrm{I}_{\mathrm{E}}$, the total collector current increases with the leakage current and so with the junction temperature.

Also the Base-Emitter voltage V_{BE} depends on temperature. When the temperature increases $V_{B E}$ drops by about $2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. It follows that I_{B} increases with temperature, and so I_{C} also increases.

Stabilization circuit with emitter resistor

One of the simplest ways to stabilize the operating point is to add a resistance R_{E} onto the emitter (figure B19.1).

fig.B19.1

Suppose for example that I_{CQ} increases, then the voltage drop across R_{E} increases; it follows that the voltage $V_{\text {BEQ }}$ falls, and with it the base current $I_{B Q}$, causing I_{C} to decrease. This is an example of negative feedback.

Stabilization circuit with collector-base resistance

The circuit of figure B19.2 also helps stabilize the Q point. If the collector current increases the voltage drop across R_{C} increases too, which reduces the collector voltage $\mathrm{V}_{\mathrm{CE}}=\mathrm{Vcc}-\mathrm{I}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{C}} . . \mathrm{As} \mathrm{I}_{\mathrm{B}}$ is approx. $\mathrm{V}_{\mathrm{CE}} / \mathrm{R}_{\mathrm{F}}$ [actually $\mathrm{I}_{\mathrm{B}}=\left(\mathrm{V}_{\mathrm{CE}}-\mathrm{V}_{\mathrm{BE}}\right) / \mathrm{R}_{\mathrm{F}}$], there is a reduction in the base current and so the collector current I_{C} tends to decrease.

fig.B19.2

Circuit with emitter resistance: stability parameters

Influence of ICBO
Suppose for the moment that the only variable parameter is the reverse current of the base-collector junction ($\mathrm{I}_{\mathrm{CBO}}$): the current stability (Si) of the circuit is given by:

$$
\begin{array}{ll}
\mathrm{Si}=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{CBO}}}=\frac{\beta \cdot\left(\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{E}}\right)}{\left(\mathrm{R}_{\mathrm{B}}+\beta \cdot \mathrm{R}_{\mathrm{E}}\right)} & \mathrm{B} 19.1 \\
\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{E}}}=\frac{\beta \cdot(\mathrm{Si}-1)}{(\beta-\mathrm{Si})} & \mathrm{B} 19.2
\end{array}
$$

or:

Note that the smaller Si is, the higher is the stability. A stability factor Si <10 characterizes a good circuit - which in this case gives $R_{B}<9 \cdot R_{E}$.

Influence of $V_{B E}$

Suppose now that the only variable is V_{BE}, with $\mathrm{I}_{\mathrm{CbO}}$ and β constant. The stability voltage factor (Sv) is equal to:

$$
\mathrm{Sv}=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{~V}_{\mathrm{BE}}}=-\frac{1}{\mathrm{R}_{\mathrm{B}} / \beta+\mathrm{R}_{\mathrm{E}}}
$$

You can say that a good circuit has a voltage stability less than 10%. In this case, with the $R_{B}<9 \cdot R_{E}$ the formula becomes:

$$
\mathrm{Sv}=-1 / \mathrm{R}_{\mathrm{E}}
$$

This formula can be rearranged as :

$$
\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{C}}}=-\frac{\Delta \mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{E}} \cdot \mathrm{I}_{\mathrm{C}}}
$$

The stability is max. in this case for the max. value of $R_{E} \cdot I_{C}$. A variation of $5-10 \%$ of I_{C} due to the variation of $V_{B E}$ is usually acceptable. From equation B19.5, this will be the case if :

$$
\mathrm{R}_{\mathrm{E}} \cdot \mathrm{I}_{\mathrm{C}} \approx 10-20 \cdot\left|\mathrm{~V}_{\mathrm{BE}}\right|
$$

Influence of the gain β

Suppose that the single variable is β with V_{BE} and $\mathrm{I}_{\mathrm{CBO}}$ constant; the gain stability factor can be expressed as:

$$
\mathrm{S}_{\beta}=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \beta}=\frac{\mathrm{I}_{\mathrm{C}} \cdot \mathrm{~S}_{\mathrm{i} 2}}{\beta 1 \cdot(1+\beta 2)}
$$

where $\mathrm{S}_{\mathrm{i} 2}$ is calculated with equation B 19.1 for $\beta=\beta 2$. From this equation you can find R_{B} / R_{E} calculating $S_{i 2}$, if $\beta 1$ and $\beta 2$ are known.

General guide

For a germanium transistor, a value of S in the order of 10 generally ensures a good stability for the current $\mathrm{I}_{\text {Cbo }}$. In this case the effects of variations in β are much reduced. In absence of data you can aim for a voltage drop across R_{E} equal to $1 / 10$ of the power supply voltage (corresponding to R_{E} nine times less than R_{B})

$$
\begin{align*}
& \mathrm{R}_{\mathrm{E}} \cdot \mathrm{I}_{\mathrm{C}}=\mathrm{Vcc} / 10 \\
& \mathrm{R}_{\mathrm{B}}=9 \cdot \mathrm{R}_{\mathrm{E}}
\end{align*}
$$

For a silicon transistor, the stability of the Q point essentially depends on the gain β, while the effect of $\mathrm{I}_{\text {сво }}$ can be neglected. In absence of data, an emitter resistance can be chosen 30 times less than the base one:

$$
\mathrm{R}_{\mathrm{B}}=30 \cdot \mathrm{R}_{\mathrm{E}} \quad \mathrm{~B} 19.10
$$

Effect of stabilization on the signal

The dynamic operation of an amplifier is altered by the stabilization network; in particular, the voltage amplification is considerably reduced. This effect can be overcome by making the stabilization network "invisible" for dynamic (ac) operation:

- in the circuit of fig. B19.3, the emitter is connected to ground (for the a.c. signal), by inserting a capacitor in parallel with R_{E}
- in the circuit of fig. B19.4, the mid point of R_{F} is set to ground by inserting a capacitor

figure B19.3

figure B19.4

B19.2 EXERCISES

MCM4	Disconnect all jumpers
on-board SIS1	Turn all switches OFF
SIS2	Insert lesson code: B19

Voltage and current measurements will be required on some circuits. If only a single multimeter is available, this will be used sometimes as a voltmeter or at other times as ammeter. When used as a voltmeter, remember to short-circuit the points of the circuit where the ammeter would be inserted.

Stabilization circuit with \mathbf{R}_{E}

Observation of the effects of temperature

- Connect jumpers J10, J11, J15, and the meters as in figure B19.5, with Vcc set to 20 V
- Adjust trimmer RV3 make I_{C} about 10 mA
- connect jumper JT for a couple of minutes, to connect power to the heating resistor and heat up T 5
- note how the voltage V_{BE} and current I_{C} change when the temperature increases. Lastly, disconnect jumper JT

fig.B19.5

Q1 When the temperature increases what happens to this voltage and current?

SET

A B
13 the two variables are unaltered
25 the current drops and the voltage increases
$3 \quad 1 \quad$ the current stays constant and the voltage drops
$4 \quad 2$ the current increases and the voltage drops
54 the current goes to zero and the voltage increases

- Disconnect jumper J15 and connect the resistance R10 by inserting J14
- adjust trimmer RV3, to take the collector current to 10 mA
- connect JT again and repeat the last measurement

Due to the stabilization effect of $R_{E}=100 \Omega$ set in the emitter, you should find that the variation of V_{BE} and I_{C} are much smaller

- connect the ammeter across J 11 and measure the base current I_{B} when the collector current is 10 mA
- calculate the static current gain $\mathrm{h}_{\mathrm{FE}}=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}} \approx \beta$

Q2 What is the calculated current gain?

SET

A B
$1 \quad 5 \quad \mathrm{~h}_{\mathrm{FE}}=0-1$
$23 \quad \mathrm{~h}_{\mathrm{FE}}=1-50$
$34 \quad \mathrm{~h}_{\mathrm{FE}}=50-90$
$4 \quad 2 \quad \mathrm{~h}_{\mathrm{FE}}=90-150$
$5 \quad 1 \quad \mathrm{~h}_{\mathrm{FE}}>150$

- Disconnect jumpers J10, J11 and measure the resistance R_{BM} between the central terminal of the trimmer and ground
- calculate the equivalent base resistance R_{B} using B18.7:

$$
R_{B}=\frac{R_{B M} \cdot\left[\left(\mathrm{RV} 3-\mathrm{R}_{\mathrm{BM}}\right)+\mathrm{R} 6\right]}{\mathrm{RV} 3+\mathrm{R} 6}
$$

- with the values of β and R_{B} determined above and using equation B19.3 calculate the stability factor Sv.

Q3 What is the stability factor $S v$?

SET

A	B	
1	6	between 1 and 2
2	5	between 2 and 3
3	4	between -1 and 0
4	1	between 20 and 30
5	3	between 10 and 20
6	2	between 0 and 1

Effect of R_{E} on the gain of an amplifier

- Connect jumpers J11, J15, J10 and the ammeter to produce the circuit shown in figure B19.6

fig.B19.6
- set $\mathrm{Vcc}=20 \mathrm{~V}$ and adjust RV 3 to obtain $\mathrm{I}_{\mathrm{CQ}}=10 \mathrm{~mA}$
- adjust the function generator to a sine wave signal with amplitude of 50 mV peak-to-peak and 1 KHz -frequency
- measure the peak-to peak voltage of the output signal on channel 2 of the oscilloscope, and calculate the voltage amplification Av of the circuit:

$$
\mathrm{Av}=\text { Vout } / \text { Vin }
$$

The value of Av is about 300 , although this value can vary, and depends on the h_{FE} of the transistor

- Disconnect jumper J15 and connect J14, to insert the resistor R10 into the emitter
- adjust RV3 to get $\mathrm{I}_{\mathrm{CQ}}=10 \mathrm{~mA}$
- measure the output signal's voltage again and calculate the amplification for the modified circuit.

Q4 The amplification has changed compared to the former circuit. Which has caused the change?

SET

A B
13 the insertion of R_{E} which introduces a reaction in the circuit and increases the amplification
25 the insertion of R_{E} which increases the stability but reduces the amplification
31 an increase of the signal generator voltage
$4 \quad 2$ an increase of the transistor temperature
54 none of the above

Effect of the decoupling capacitor

- In the last circuit, connect jumper J16 to insert capacitor C3 in parallel with R10
- with the oscilloscope, measure the amplitude of the output signal, and calculate the voltage amplification
- compare this result with that obtained in the last chapter

The insertion of the decoupling capacitor C3 eliminates the feedback effect for the ac component of the signal. This gives a high gain (for ac) once more, similar to the gain that was obtained without R_{E}

On-baard SIS1	Turn switch S3 ON
SIS2	Press "INS"

Q5 From measurements on the circuit, what fault has been inserted?

SET

$A \quad B$
14 the collector and the emitter of T5 are short-circuited
25 the circuit on the base of T 5 is disconnected
31 the base and the emitter of T5 are short-circuited
43 the resistance R10 has been increased
52 the resistance R9 is disconnected

Son-board SIS1
Turn switch S3 OFF

Stabilization circuit with collector-base resistance

- Connect jumpers J12, J15 and the ammeter as in figure B19.7

fig.B19.7
- Adjust voltage Vcc get a current I_{CQ} of 5 mA
- connect jumper JT for a few seconds, to provide power to the heating resistor and heat up transistor T5
- note the behavior of the current IC as the temperature increases. Then disconnect jumper JT and allow transistor T5 to cool
- disconnect jumper J12 and connect J10 and J11
- adjust trimmer RV3, and take the collector current to 5 mA
- insert JT again and repeat the last measurement

The variations of I_{C} are smaller when the feedback resistor $R 8$ is inserted.

B19.3 SUMMARY QUESTIONS

Q6 The purpose of the emitter resistance R_{E} is to:
SET
$A \quad B$
14 decrease the temperature of the collector-emitter junction
25 make the circuit less sensitive to temperature variations
3 1 calculate the emitter current
$4 \quad 2 \quad$ isolate the emitter from the circuit ground
53 protect the emitter from stray voltage pulses

Q7 The stability of the operating point of a transistor is improved by inserting a :

SET

A B
13 resistance between base and emitter and capacitance between emitter and ground
25 resistance between emitter and ground or capacitance between emitter and ground
32 resistance between collector and power supply
$4 \quad 1 \quad$ resistance between emitter and ground or resistance between collector and base
54 resistance between collector and base or capacitance between emitter and ground

Q8 A circuit has a good stability when Si is:

SET

$A \quad B$
12 less than the 10%
24 more than the 10%
$3 \quad 1 \quad$ equal to the gain h_{FE}
$4 \quad 5 \quad 2 \cdot R_{B} / R_{E}$
53 calculated as operating point in the saturation region

Q9 The operating point of a silicon transistor is stabilized with an emitter resistance R_{E}. What is a typical value for R_{E} ?

SET		
A	B	
1	3	$\mathrm{R}_{\mathrm{E}}=\mathrm{R}_{\mathrm{B}} / 9$
2	5	$\mathrm{R}_{\mathrm{E}}=\mathrm{R}_{\mathrm{B}} / 30$
3	4	$\mathrm{R}_{\mathrm{E}}=\mathrm{Vcc} /\left(10 \cdot \mathrm{I}_{\mathrm{C}}\right)$
4	1	$\mathrm{I}_{\mathrm{C}}=10 \cdot \mathrm{I}_{\mathrm{B}}$
5	2	$\mathrm{Vcc}=2 \cdot \mathrm{~V}_{\mathrm{CE}}$

[^0]
APPENDIX "A": SYMBOLS USED

The following points sum up the notation used for the voltages and currents.

1. The instantaneous values of the variables varying in time are represented with small letters ("v" for the voltage and " i " for the current)
2. the average value of the variables in time, or quantities which remain constant, are represented by the corresponding capital letters ("V" for the voltage and "I" for the current)
3. the terminals of a device are identified by the first capital letter of the name of the terminal ($\mathrm{B}=\mathrm{Base} ; \mathrm{D}=$ Drain, etc.)
4. the currents in a device have an index letter corresponding to the terminal to which they refer to (e.g.: i_{B}, I_{B}, i_{b}, Base currents; i_{D}, I_{D}, i_{d}, Drain currents). The voltages between two terminals are identified by the indexes indicating those terminals (e.g.: $\mathrm{v}_{\mathrm{be}}, \mathrm{v}_{\mathrm{BE}}$, V_{BE}, - voltage between Base and Emitter)
5. the maximum value and the average value have the index in capitals (e.g.: $i_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}}$ for the currents; $\mathrm{V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{BE}}$ for the voltages)
6. the index for ac, or incremental components is in small letters (e.g.: i_{b} for the currents; v_{be} for the voltages).
7. the power supply voltage is usually indicated by repeating the capital index of the electrode to which it refers to, e.g. V_{CC} (although this symbol is sometimes used indiscriminately when the power is applied to other terminals, such as the Drain or Anode)

APPENDIX "B": DATA SHEETS

- transistor NPN BC337
- transistor PNP BC327
- JFET BF245
- phototransistor TIL81
- photodiode TIL100
- photoresistor NSL467
- RTD PTC thermistor
- RTD NTC thermistor

BC337, BC338

NPN Silicon Epitaxial Planar Transistors

for switching and amplifier appilications. Especially suitable for AF-driver stages and low power output stages.

These types are also available subdivided into three groups $-16,-25$ and -40 , according to their DC current gain. As complementary types the PNP transistors BC327 and BC328 are recommended.

On special request these transistors are also manufactured in the pinconfiguration TO-18.

Plastic package 1003
according to DIN $41870(=$ TO-92)
The case is impervious to light
Weight approximately 0.18 g Dimensions in mm

Absolute Maximum Ratings

	Symboi	Value	Unit
Collector Emitter Voltage $\begin{array}{l}\text { BC337 } \\ \\ \text { BC338 }\end{array}$	$\begin{aligned} & V_{\text {CES }} \\ & V_{\text {CES }} \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\begin{array}{ll}\text { Collector Emitter Voltage } & \text { BC337 } \\ \\ & \text { BC338 }\end{array}$	$\begin{aligned} & V_{\text {CEO }} \\ & V_{C E O} \end{aligned}$	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Emitter Base Voltage	$V_{\text {EBO }}$	5	V
Collector Current	lc	800	mA
Peak Collector Current	$\mathrm{ICM}_{\text {cm }}$	1	A
Base Current	18	100	mA
Power Dissipation at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tox }}$	$625^{1 /}$	mW
Junction Temperature	T_{1}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{3}	-55 to +150	${ }^{\circ} \mathrm{C}$
${ }^{\text {" }}$ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case			

Characteristics at $\mathrm{T}_{\text {amo }}=25^{\circ} \mathrm{C}$

BC327, BC328

PNP Silicon Epitaxial Planar Transistors
for switching and amplifier applications. Especiaily suitable for AF-driver stages and low power output stages.

These types are also available subdivided into three groups -16. -25 and -40 , according to their DC current gain. As complementary types the NPN transistors BC337 and BC338 are ecommenced.

On special request these transistors are also manufactured in the pinconfiguration TO-18.

Plastic package 1003
according to DiN 41870 (\approx TO-92)
The case is impervious to light
Weight approximately 0.18 g
Dimensions in mm

Absolute Maximum Ratinga

		Symbol	Value	Unit
Collector Emitter Voitage	$\begin{aligned} & \mathrm{BC} 327 \\ & \mathrm{BC} 328 \end{aligned}$	$\begin{aligned} & -V_{C E S} \\ & -V_{C E S} \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	v
Collector Emitter Voltage	$\begin{aligned} & \text { BC327 } \\ & \text { BC328 } \end{aligned}$	$\begin{aligned} & -V_{C E O} \\ & -V_{C E O} \end{aligned}$	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Emitter Base Voltage		$-V_{\text {E8O }}$	5	V
Collector Current		ta_{C}	800	mA
Peak Collector Current		- Cm	1	A
Base Current		H_{6}	100	mA
Power Dissipation at $\mathrm{Tamo}=25^{\circ} \mathrm{C}$		Ptor	625"	mW
Junction Temperature		T_{i}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		T_{s}	$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
"Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case				

BC327, BC328

Characteristics at $\mathrm{T}_{\text {ant }}=25^{\circ} \mathrm{C}$

	Symbol	Min.	Typ.	Max.	Unit
DC Current Gain					
at $-V_{C E}=1 \mathrm{~V},-l_{C}=100 \mathrm{~mA}$ BC327, 8C328	$h_{f E}$	100	-	630	-
Current Gain Group 16	$h_{\text {FE }}$	100	160	250	-
25	$n_{\text {FE }}$	160	250	400	-
40	$h_{\text {FE }}$	250	400	630	-
at $-\mathrm{V}_{C E}=1 \mathrm{~V},-\mathrm{l}_{\mathrm{C}}=300 \mathrm{~mA} \quad$ BC327, BC328	$h_{\text {fe }}$	60	-	-	-
Current Gain Group 16	$h_{\text {FE }}$	60	130	-	-
25	$h_{\text {fe }}$	100	200	-	-
40	$h_{\text {FE }}$	170	320	-	
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\text {tina }}$	-	-	$200^{\prime \prime}$	K/W
Collector Cutoff Current $a t-V_{C E}=25 \mathrm{~V}$ 8C328	- ${ }_{\text {ces }}$	-	2	100	nA
$\begin{array}{ll}\text { at }-V_{\text {CE }}=45 \mathrm{~V} & \text { BC327 }\end{array}$	- lems	-	2	100	nA
at $-\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=125^{\circ} \mathrm{C} \quad$ BC328	- Ices	-	-	10	$\mu \mathrm{A}$
at $-\mathrm{V}_{\text {CE }}=45 \mathrm{~V}, \mathrm{~T}_{\text {amt }}=125^{\circ} \mathrm{C} \quad$ BC327	- $_{\text {ces }}$	-	-	10	$\mu \mathrm{A}$
Collector Emitter Breakdown Voltage at $h_{c}=10 \mathrm{~mA}$	- $V_{\text {(balceo }}$	45	-	-	V
BC328	- $V_{\text {(bariceo }}$	25	_	-	V
Collector Emitter Breakdown Voltage at $-_{C}=0.1 \mathrm{~mA}$					
BC328	- $V_{\text {isfices }}$	30	-	-	V
Emitter Base Breakdown Voltage at $-^{-1}=0.1 \mathrm{~mA}$	$-V_{\text {(GR) }}$ eso	5	-	-	V
Collector Saturation Voltage at $-l_{C}=500 \mathrm{~mA},-l_{G}=50 \mathrm{~mA}$	$-V_{\text {CEam }}$	-	-	0.7	V
Base Ernitter Voltage at $-\mathrm{V}_{\text {CE }}=1 \mathrm{~V}, \mathrm{H}_{\mathrm{C}}=300 \mathrm{~mA}$	$-V_{\text {gE }}$	-	-	1.2	V
Gain Bandwidth Product at $-V_{C E}=5 \mathrm{~V},-l_{c}=10 \mathrm{~mA}, \mathrm{f}=50 \mathrm{MHz}$	f_{T}	-	100	-	MHz
Collector Base Capacitance at $-\mathrm{V}_{\mathrm{ca}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {c30 }}$	-	12	-	pF
${ }^{17}$ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case					

Characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

	Symbot	Min.	Typ.	Max.	Unit
DC Current Gain					
at $-\mathrm{V}_{\text {CE }}=1 \mathrm{~V},-_{\text {c }}=100 \mathrm{~mA} \quad$ BC327, BC328	$h_{\text {fe }}$	100	-		
Current Gain Group 18	$h_{\text {FE }}$	100	160	630	-
25	$h_{\text {fe }}$	160	250	400	-
at $-V_{C E}=1 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA} \quad \mathrm{BC327}$ BC320	$h_{\text {FE }}$	250	400	630	-
$a t-V_{C E}=1 V_{1}--_{C}=300 \mathrm{~mA}$ BC327, BC328	$\mathrm{hreg}^{\text {en }}$	60	-	OJo	-
Current Gain Group 16	$\mathrm{n}_{\text {FE }}$	60	130	-	
25	$\mathrm{hfe}^{\text {fer }}$	100	200	-	
40	$h_{f E}$	170	320	-	
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\text {tha }}$	-	-	200)	KW
Collector Cutotf Current					
at $-\mathrm{V}_{\text {CE }}=25 \mathrm{~V}$ BC328					
$\begin{array}{ll}\text { at }-V_{\text {CE }}=45 \mathrm{~V} & \text { BC327 }\end{array}$		-	2	100	nA
at $-\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{~T}_{\text {amo }}=125^{\circ} \mathrm{C} \quad 8 \mathrm{BC327}$	${ }^{-I_{\text {CES }}}$	-	2	100	пA
at $-\mathrm{V}_{\text {cE }}=45 \mathrm{~V}, \mathrm{~T}_{\text {amo }}=125^{\circ} \mathrm{C} \quad 8 \mathrm{BC328}$	$\begin{aligned} & \text {-lees } \\ & \text {-lces } \end{aligned}$	-	-	10	$\mu \mathrm{A}$
$\text { at }-t_{C}=10 \mathrm{~mA}$					
BC328	- $V_{\text {(ea)ceo }}$	45	-	-	\checkmark
Collector Emitter Breakdown Votage at $-\mathrm{l}_{\mathrm{c}}=0.1 \mathrm{~mA}$					
at $\mathrm{i}_{\mathrm{c}}=0.1 \mathrm{~mA}$ BC327	$-V_{\text {(batices }}$		-	-	
BC328	$-V_{\text {SBRTCES }}$	30	-	-	v
Emitter Base Breakdown Voltage at $-I_{E}=0.1 \mathrm{~mA}$		5	-	-	V
Collector Saturation Voltage	- $\mathrm{V}_{\text {CEsam }}$	-			
at $-\mathrm{l}_{\mathrm{C}}=500 \mathrm{~mA},-\mathrm{l}_{\mathrm{B}}=50 \mathrm{~mA}$	CEsam	-	-	0.7	V
Base Emitter Voltage at $-V_{C E}=1 \mathrm{~V},-_{C}=300 \mathrm{~mA}$	$-V_{\text {gE }}$	-	-	12	V
Gain Bandwidth Product	t_{T}				
$\text { at }-V_{C E}=5 \mathrm{~V},-t_{c}=10 \mathrm{~mA}, t=50 \mathrm{MHz}$	${ }_{\text {T }}$	-	100	-	MHz
Collector Base Capacitance at $-\mathrm{V}_{\text {cB }}=10 \mathrm{~V}, \mathrm{t}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {cBo }}$	-	12		
"Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case					

- VHF.Amplifiers and Mixer
- CommonGate Circuits for Racio Frequeney Application with Low Input Resistence and Small Feedback
- $f_{g}=700 \mathrm{MHz}$ typ
- $1 / 911 \mathrm{~g}=4 \mathrm{k} \Omega$
- $\left|Y_{21 s}\right|=5.5 \mathrm{~ms}$ typ
- $\mathrm{Cl}_{12}=1.1 \mathrm{pF}$ typ

description

These componemfs are testod according to the appropriate test method of MIL-STD-750. By special agreement, they can also be terted additionally to MIL or DIN specifications.
mechanical date

DrainGate Volteme 30 V
Draim-Source Voltege $\pm 30 \mathrm{~V}$
Gate Curromt 10 mA
Continuous Oevies Distipntion at $\mathbf{2 5}^{\circ} \mathrm{C}$ Fres Air Tomperature (Sen Note il 300 mW
Storage Temperatury Range $-55^{2} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature 1/18 Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$

BF245
 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD EFFECT TRANSISTOR

electrical characteristics at $\mathbf{2 5} \mathbf{C}$ free air temperature

	PARAMETEA	TEST CONDITIONS	MIM	TYP	NAX	UNIT	
- Viamiass	Gate-Source Breandown Voltage	${ }^{-1} G_{G}=1 \mu A . V_{0 S}=0$	30			v	
-igss	Gate Auverne Current	$-V_{G s}=20 \vee . V_{o s}=0 \mathrm{~V}$			5	na	
'0ss	Zero-Gete Voltage Orain Curremt	$V_{D S}=15 \mathrm{~V}, V_{G S}=0 \mathrm{~V}$ See Note 2	2		25	ma	
$-V_{\text {as }}$	GateSource Valrape	$V_{0 s}=95 \mathrm{~V}, \mathrm{I}_{0}=200 \mu \mathrm{~m}$	0.4		7.5	\checkmark	
- Vestorl)	Gate Source Cutolf Currem	$V_{0 s}=15 \mathrm{~V}, \mathrm{I}_{0}=10 \mathrm{nA}$	0.5		8.0	v	
$\left\|Y_{21} \\|_{1}\right\|$	Smill-Signel Commorsource Forwerd Trungter Admurtince	$\begin{aligned} & V_{0 s}=18 \mathrm{~V},-V_{a s}=0 \mathrm{~V} \\ & f \Rightarrow 1 \mathrm{KHz} \end{aligned}$	3.0	5.3	6.6	ms	
${ }^{9}$	Commorsource Boncturdth	$v_{D S}=18 V_{0}-V_{G s}=0 V .$ Sea Note 3		700		MHz	
C_{128}	Common-Source Short-Circuit Rovere Trander Capertance	$\begin{aligned} & V_{O S}=20 \mathrm{~V} .-V_{G S}=1 \mathrm{~V} . \\ & f=1 \mathrm{MHz} \end{aligned}$		1.1		of	
C11:	CommonSource Short-Circult Indut Canecitance	$\begin{aligned} & V_{O S}=20 \mathrm{~V},-V_{G S}=1 \mathrm{~V} . \\ & 1=1 \mathrm{MHs} \end{aligned}$		4.0		DF	
C_{224}	Common-Source Short-Circuir Ourpur Capecitance	$\begin{aligned} & V_{\text {os }}=20 V_{1}-V_{\text {os }}=1 \mathrm{~V} . \\ & 1=1 \mathrm{MHz} \end{aligned}$		1.8		pf	
1/0118	Small Signal Common-tource	$\begin{aligned} & V_{0 s}=20 \mathrm{~V},-V_{a s}=1 \mathrm{~V} . \\ & f=100 \mathrm{MHz} \end{aligned}$		14		$k \Omega$	
	Inour inperionee	$\begin{aligned} & V_{O S}=20 \mathrm{~V},-V_{G E}=1 \mathrm{~V}, \\ & 1=200 \mathrm{mMz} \end{aligned}$	4			$\mathrm{k} \Omega$	

On request following IOSS'VGS-Groups can be delivered

	PARAMETEA	TEST CONOITIONS		MIN	max	Unıt
'oss	Zwro Gese Voitape Orain Currem	$v_{0 S}=15 \mathrm{~V}, \mathrm{~V}_{0 S}=0 \mathrm{~V}$	Group A	2.0	6.5	TA
			Grouo 8	6.0	15	mA
			Group C	12	25	mA
-Vos	Gere-Source voluse	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{M}$	Group 4	0.4	2.2	v
			Group :	1.6	3.8	\checkmark
			Group C	3.2	7.5	v

- High Photosensutivity
- Fast Response
- Low-Cost Plàstic Packaga
- Designed for Iniraned Remote-Control Systems
- Spectrally Matched with IIL38 Emitter

description

The TILl00 is a highspeed PIN pnotodiode designed to operate in the reversobias mode. It provides low caascitance with high speed and high photosensitivity suitable for near-intrared appications.

meshanical data

The photodiode chip is mounted on a lasd frame and molded in a black intrared-transmissive plastic. The active chip area is ivpicaly 8.83 square milimeters (0.0137 square inches). Its centerline is nominally 4 millimeters $(0.157$ inch $)$ dbove ine seating plane.

absolute maximum rating; at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
(6) Reverse Voltage

Continuous Power Dissipation at lor belowi $25^{\circ} \mathrm{C}$ Free-Air Tomperature (See Nate i) 150 mw

Storage Temperature Range
$-25^{\circ} \mathrm{C}$: $100^{\circ} \mathrm{C}$ Lead Temperarure $1,6 \mathrm{~mm}\left(1 / 16\right.$ inchi from Casa for 3 Seconds $-25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
NOTE 1 Dorate unemiv to $100^{\circ} \mathrm{C}$ tree.ar iemoersture ot the rete of $2 \mathrm{mw} \mathrm{t}^{\circ} \mathrm{C}$

TYPE TILIOO

LARGE-AREA SILICON PHOTODIODE

alectrical charecteristics at $25^{\circ} \mathrm{C}$ freo-if temperature
(1)

PARAMETEA		TEST CONDITIONS			WIN	TVP	MAX	UNIT
V'gR)	Brashatomn Vottage	1a-100 mA	$E_{t}{ }^{\text {d }} 0$		30			\checkmark
10	Oefk Current	Va* 10 V .	$E_{t}{ }^{\text {f }}$ - 0	1		5	50	na
${ }^{1}$	Light Current	$V_{a}=10 \mathrm{~V}$.	$\underline{E}_{0}{ }^{+}-25 \mathrm{w} / \mathrm{m}$	m^{2} at 940 mm	10	5		A
Cr_{T}	Foran Cagentanca	$V_{\text {P }}=3 \mathrm{~V}$.	$E_{e}^{\dagger}=0$.	1.1 MHz		30	50	Of
1.	Gise Tirne	$v a=10 \mathrm{~V}$.	$\mathrm{R}_{1}-1 \mathrm{k} \Omega$			100		m
1	Fall Time	Va-10V.	$\mathrm{P}_{1}=1 \mathrm{k} \Omega$			100		n

TYPICAL CHARACTERISTICS

TOTAL CAPACITANCE
vS
REVERSE VOLTAGE

figune 1

REVERSE CURAENT
vs
irRADIANCE

(3)
frauniz 2

- Recommended for Application in Character Recognition, Tape and Card Readers, Velocity Indicators, and Encoders
- Spectrally and Mechanically Matehed with TIL31/TIL33 IR-Emitters
- Glass-mo-Meral-Seal Header
- Base Contract Externally Available
- Saturation Level Directy Compatible with Most TTL/DTL
mechanical data

The device is in a hermeticelty sealed pecksge with glase window. The outline of the TIL81/TIL99 is similar to TO-18 except for the window. Als TO-18 registration notes also apply to this outline.

abocke maximum ratings at $25^{\circ} \mathrm{C}$ frem-ieir temperature (unleas otherwise noted)
Collector-Bam Volterp
50 V
30 V
Colbeser-Emittier Voltuge
Colbeser-Emittier Voltuge
Emitror-Ben Votece
Emitror-Ben Votece 7 V
Emittr-Collector Voltage 7 V
Contimuens Colbetor Current 50 mA
Continuous Device Dismipation at (or betow) $25^{\circ} \mathrm{C}$ Fros-Air Temperature (See Nore 1) 250 mwOperating Fres Ain Temperature Runge . $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storege Tumperaturs Rance$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ from Case for 10 Seconos$240^{\circ} \mathrm{C}$

TYPES TIL81/TIL99
 NPN PLANAR SILICON PHOTOTRANSISTORS

dectricen cherecteristios at 250 C freseir temperature (unless otherwos noted)

FAnAMETEA				TEST CONDITION			MHM	TYP	\max	UNOI 7
$V_{\text {f }}$				$1 ¢=100 \mu A$.	$\mathrm{I}_{\mathrm{E}} \times 0$.	$\mathrm{H}=0$	50			v
Vibniceo	Colmexar-Envites mrenkeown voutepe			$1 \mathrm{c}=100 \mu \mathrm{~A}$.	$1 \mathrm{~g}=0$.	H $=0$	30			v
	Emvtir-as Erumeonn volime			If $=100 \mathrm{\mu A}$.	$t C=0$	H00	1			v
V (An)ECO				$1 \mathrm{E} \cdot 100 \mu \mathrm{~A}$.	is $=0$.	H-0	,			v
10	Dart currue		Pnowournmerer Operntion	$v_{C E}=10 \mathrm{~V}$.	${ }^{1} 8=0$	$H=0$			3.1	
				$\begin{aligned} & r_{C E}=10 \mathrm{~V} \\ & r_{A}=100 \mathrm{C} \end{aligned}$	$I_{B}=0 .$	$\mathrm{H}=0$.	2			$\mu \mathrm{A}$
			Phoremata Opmetion	$V_{\text {cse }}=10 \mathrm{~V}$.	E E O.	H*O			3.01	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{L}$	Lione Cumbe	$\begin{gathered} \text { TiL } \\ 81 \end{gathered}$	Prorewremerter Opwration	VCE F V . Smen Now 2	$I_{\mathrm{B}}=0$	$\mathrm{H}=5 \mathrm{~mW} / \mathrm{cm}^{2}$	5	22		ma
			Mrovetiede Opmetren	$V_{C B}=0$ to 50 See Nove 2	$1 E=0 .$	$H=20 \mathrm{mw} / \mathrm{cm}^{2} .$		170		$\mu \mathrm{A}$
IL	Lipte Curnm	$\begin{aligned} & \text { TH } \\ & 98 \end{aligned}$	Mreawremenor Opmetion	$\begin{aligned} & \text { VCE - } 5 V \text {. } \\ & \text { Sum Nore } 2 \end{aligned}$	$1 g=0$	$E_{4}=20 \mathrm{mw} / \mathrm{em}^{2}$	1	5		ma
			Pravelies Opmutuen	$\forall \mathrm{Cs} \cdot 0$ to 50 See More 2	$I_{E}=0$	$E_{q}=20 \mathrm{mw} / \mathrm{cm}^{2} .$		40		H4
HFP童				$V_{\text {cE }}=5 \mathrm{~V}$.	c-1m	$E_{s}=0$		300		
Vceeters				$\begin{aligned} & l_{c}=0.4 m{ }_{n}, \\ & \text { sen Noev } 2 \end{aligned}$	$1 \mathrm{~B}=0$	$E_{ष}=20 \text { mwem }^{2}$		0.2		\checkmark

switection characturistes at $25^{\circ} \mathrm{C}$ fromeir romperaurs 7

PAMAMETER			TEST COMOHTIONS	TrPical	UNIT
4	Rine Time	Movernveremin Oparation	$\begin{aligned} & V_{C C}=5 \mathrm{~V} . \quad \mathrm{I}_{\mathrm{L}}=800 \mathrm{~mA} . \mathrm{R}_{\mathrm{L}}=100 \Omega . \\ & \text { Seo Tom Civecuir A of Figors } 1 \end{aligned}$	8	48
4	Fowl Time			8	
4	R100 Time	Emonation Operanion		350	"
4	Fwintime			500	

PAAAMETER MEASUREMENT INFORMATION

b. Ouget min

SUMMARY OF STANDARD PHOTOCELLS

CADMIUM SULPHIDE PHOTOCONOUCTIVE CELLS (Peak of SDectrat Resconse at 5500 A)

CADMIUM SELENIDE PHOTOCONDUCTIVE CELLS (Peak of Spectrat Risponse at $7200 \AA$

Cell Typo no	$\begin{aligned} & 1 \text { Fre Res: } \\ & \text { K, ionms } \end{aligned}$	$\begin{aligned} & \text { Tyoical } 100 \\ & \text { Fte Res Ohms } \end{aligned}$	Min. Dark Res Meconm	Mox votage		Case T		
NSL. 364 NSL- 367	5.2	125	200	80	100	Hermetic 0.250° Ois FIA.		
NSL.384	100	2400	3000	250	100			
NSL. 387	68	90	100	80	100	$\underset{\text { Hermatic }}{\text { TO.5 }}$	FIt. 6	
NSL. 393	1.7	1600	1000	250	100			
NSL. 396	17.0	400	10	80	500	Nermetic	FIE. 7	
NSL.3931	17	40	100	320	500			
NSL-3961	17.0	400	2.0	70	200	$\begin{aligned} & \text { Epaxy } \\ & 0.5 \text { Dia. Fie. } \end{aligned}$		
urice at 2			20.0	350	200			

PHOTOCELL - LAMP ASSEMRLIES

A. 1038.1

SILICON PHOTOTRANSISTOR (Peak of Spectral Response ar $8600 \AA$)

Type No.	$\begin{aligned} & { }^{1} \text { CEO } \\ & \\ & \hline \text { at } 15 \mathrm{~V} \\ & \hline \end{aligned}$	Dark ICEO at $25^{\circ} \mathrm{C}$	$\begin{gathered} \text { Max. Vartisa } \\ v_{\text {CEEO }} \\ \hline \end{gathered}$	$\begin{gathered} \text { Power } \\ \text { Rating MW } \end{gathered}$	Descmption
PT. 701	5 MA	$05 \mu \mathrm{~A}$	30	150	NPM silicon Transiator TO-1] Can Fil il
- at 200 Fte (10 MW/ /m』 28000K Source					

PTC Thermistors

Reference temperature $r_{\text {ram }}$ ${ }^{\circ} \mathrm{C}$	Reference rasiatence $R_{\text {rut }}$ Ω	\qquad	Reabiance value at T_{p} R_{p} $k \Omega$	Orcering coce	Min. at.	10 49	50 10 90	$\begin{aligned} & 100 \\ & \text { to } \\ & 498 \end{aligned}$	$\begin{aligned} & 500 \\ & 10 \\ & 990 \end{aligned}$

Operating voltuge $V_{\text {max }}=10 \mathrm{~V}$

60	12	110	≥ 4	$063100-\mathrm{P} 330-\mathrm{C} 14$	10				
80	12	125	≥ 4	$063100-\mathrm{P} 350-\mathrm{C} 14$	10				
120	12	155	≥ 4	$063100-\mathrm{P} 390-\mathrm{C} 14$	10				

Operating voltage $V_{\text {max }}=50 \mathrm{~V}$

40	220	95	≥ 50	Q63100-P310-C12	10			
60	160	110	≥ 50	Q63100-P330-C12	10			
80	160	125	≥ 50	Q63100-P360-C12	10			
120	170	155	≥ 50	Q63100-P350-C12	10			

Operating voliage $V_{\text {max }}=60 \mathrm{~V}$

60	54	110	≥ 20	$063100-$ P330-C13	10				
80	54	125	≥ 20	$063100-$ P350-C13	10				
120	58	155	≥ 20	$063100-$ P350-C13	10				

Opernting voltage $V_{\text {max }}=250 \mathrm{~V}$

60	2000	110	≥ 1	$083100-\mathrm{P} 330-\mathrm{CAO}$	10				
80	2000	125	≥ 1	$063100-\mathrm{P} 30-\mathrm{C40}$	10				
120	2000	155	≥ 1	$063100-P 390-\mathrm{C} 40$	10				

Operating votiage $V_{\text {max }}=20 \mathrm{~V}$; Tent voltege leade/cmee 3 kVee

40	230	95	≥ 100	$063100-P 310-0401$	5				
60	160	110	≥ 100	$06300-330-0401$	5				
80	152	125	≥ 100	$063100-P 350-0401$	5				
90	152	130	≥ 100	$063100-P 300-0411$	5				
100	148	155	≥ 100	$063100-P 390-0401$	5				

[^1]
PTC Thermiators

PTC thermistors as tompernture sencor for meacurement and control taske

Nomina threenold temperature ${ }^{\text {TMAT') }}$$\qquad$	PTC rasimiance			Ordering code	Min quy	10	($\begin{aligned} & 50 \\ & 10 \\ & 0\end{aligned}$	$\left\lvert\, \begin{aligned} & 100 \\ & 10\end{aligned}\right.$	($\begin{aligned} & 500 \\ & 10 \\ & 990\end{aligned}$
	\% ${ }^{\text {¢xp }}$	PTC temoerature: $T_{\text {MuT-T }} \mid T_{\text {Mat }}$							
		nat -T							
	Ω		Ω						

$₹ 60$	≤ 250	≤ 570
- 70	≤ 250	≤ 570
「80	≤ 250	≤ 570
$\nabla 90$	≤ 250	≤ 550
F 100	≤ 250	$\underline{550}$
マ110	≤ 250	≤ 550
$\nabla 120$	≤ 250	$\checkmark 550$
$\nabla 130$	≤ 250	≤ 550
$\nabla 140$	≤ 250	≤ 550
$\checkmark 145$	≤ 250	≤ 550
$\nabla 150$	≤ 250	≤ 550
$\checkmark 155$	≤ 250	≤ 550
$\nabla 160$	≤ 250	5550
$\checkmark 170$	≤ 250	<550
V180	≤ 250	≤ 550

Operating voltage $V_{\text {max }}=30 \mathrm{~V}$

Operating vortage $V_{\text {man }}=30 \mathrm{~V}$

PTC Thermistors

PTC thermistors as temperature sensors for measurement and control taaks Dimensional drawings

Q63100-P***-C8 (encapsulatad)

Q63100-p th
(encapsulated)

063100- $\uparrow * *-C 40$ (encapsulated)

063100-P ***-C11 (encapsulated)

063100-P***-C14 (encapsulated)

(incorporated in a screw-type case, electically insulated)

Dimenaions in nmin

Generalità

I termistori NTC sono resistenze a semiconduttori con coefficiente di temperatura negativo (compreso tra 3 e $5 \% / \mathrm{K}$), realizzati mediante stampaggio e successiva sinterizzazione degli ossidi dei metalloidi manganese, ferro, cobalto, rame, nichel e zinco.
Già da tempo i termistori hanno trovato ampia applicazione nel settore dell'elettronica grazie alle loro eccellenti caratteristiche quali:

- Elevata sensibilità

- Buona riproducibilità grazie alla stabilità meccanica, termica ed elettrica
- Resistenza agli influssi esterni
- Lunga durata
- Ingombro ridotto
- Rapporto prezzo/prestazioni

La semplicità d'impiego e l'elevata affidabilità li rendono particolarmente adatti a compiti di controllo, sorveglianza, misura e simili.

II rapporto tra resistenza e temperatura si rileva dalla caratteristica R/T e dal coefficiente di temperatura.

Compensazione della temperatura

Quasi tutti i semiconduttori hanno un coefficiente di temperatura positivo, per cui i termistori consentono di stabilizzare, a costi contenuti, la temperatura dei circuiti elettronici (equipaggiati con termistori SIPMOS, tiristori di potenza, TRIACS) che possono quindi funzionare senza subire l'influsso della temperatura ambiente e della potenza dissipata. In questo caso è importante l'accoppiamento termico tra NTC e componenti da compensare in modo che la caratteristica d'intervento risulti sincrona. Se la temperatura deve avere un andamento lineare, è sufficiente collegare una resistenza in paralleto o un circuito di linearizzazione; la funzione che ne deriva presenta un andamento sinusoidale, per cui la temperatura nel punto d'inversione deve trovarsi al centro del campo della temperatura di lavoro. Il valore della resistenza in parallelo si deduce dalla seguente formula: ${ }^{1)}$
$R_{\rho}=R_{T M} \times(B-2 T M) /(B+2 T M)$
$R_{\rho}=$ Resistenza in parallelo
$R_{T M}=$ Resistenza del termistore al centro di un campo di temperatura
TM - Temperatura al centro di un campo di temperatura
$B=$ Coefficiente B del termistore

Esempi d'impiego

- Nell? olettronica civile

Compensazione della temperatura negli stadi finali $\mathrm{Hi}-\mathrm{Fi}$ equipaggiati con transistori SIPMOS, circuiti di sintonia AF con diodi capacitivi ecc.

- NellPelettronica industriale

Stabilizzazione della temperatura di diodi laser e fotoelementi con refrigeratore PELTIER, caricabatterie a celle solari, compensazione del giunto freddo di termocoppie, compensazione della temperatura di bobine di rame ecc.

Per dimensionare i circuiti, è opportuno dire che gli NTC a più bassa resistenza presentano un coetficiente B minore, per cui sono adatti a campi di temperatura più ampi, quelli a più alta resistenza hanno invece un coefficiente B più elevato e quindi sono adattl a circuiti maggiormente sensibili alla temperatura.
É disponibile una vasta gamma di NTC per i più svariati casi, per esempio il termistore K 45 è idoneo al montaggio su dissipatori di calore, il C 621 (formato chip) e stato studiato per il montaggio automatizzato.

- Negil elettrodomesticl

Stabilizzazione della velocità in apparecchi da cucina, fruste miscelatrici ecc.

Compensazione della temperatura

K 45

Tipo	Resistenza nominale R_{N} 0	Tolleranza ΔR_{N} $\%$	Coefficiente B K	Carico ammissibile P_{25} $\left(\theta_{4}=25{ }^{\circ} \mathrm{C}\right)$ mW
$\text { K } 45$ da $6,8 \Omega$ a $470 \mathrm{k} \Omega$	${ }_{10}^{6,8}$	± 10	2600	750
	15		2600	
	22		2900	
	33		2900	
	47		3000	
	100		3050	
	150		3200	
	220		3200	
	330		3200	
	470 680		3450	
	1,0 k		3560	
	1,5 k		3700 3900	
K 164	2,2 3,3		3900	
da $6,8 \Omega$ a $470 \mathrm{k} \Omega$	4.7 k	± 10 ± 20	3950	
	6,8 k		3950	
	10 k		4200	
	15 k		4150	
			4300	
	47 k		4300	
	68 k		44500	
	100 k		4600	
	220 k		4600	
	330 k		4830	

K 164

Temperatura nominale d_{N} ${ }^{\circ} \mathrm{C}$	Campo di temperatura secondo DIN 40040 ${ }^{\circ} \mathrm{C}$	Costante termica del tempo di raffreddamento $\tau_{\text {th }}$ s	Sigla di ordinazione	
			$\begin{aligned} & \text { Tipo K } 45 \\ & \text { Q63045- } \end{aligned}$	$\begin{aligned} & \text { Tipo K } 164 \\ & \text { Q63016- } \end{aligned}$
25	da $-55 \mathrm{a}+125$	ca. 30	$\begin{aligned} & -K 60-K 800 \\ & -K 100-K \\ & -K 150-K \\ & -K 220-K \\ & -K 330-K \\ & -K 470-K \\ & -K 680-K \\ & -K 101-K \\ & -K 151-K \\ & -K 221-K \\ & -K 331-K \\ & -K 471-K \\ & -K 681-K \\ & -K 102-K \\ & -K 152-K \\ & -K 222-K \\ & -K 332-K \\ & -K 472-K \\ & -K 682-K \\ & -K 103-K \\ & -K 153-K \\ & -K 223-K \\ & -K 333-K \\ & -K 473-K \\ & -K 683-K \\ & -K 104-K \\ & -K 154-K \\ & -K 224-K . \end{aligned}$	 -K4010-* -K4015-* -K4022-* -K4033-* -K4047-* -K4068-* K4100-* -K4150-* -K4220-* -K4330-* -K4470-* -K4680-* -K4001-40 K4001-*45 -K4002-42 -K4003-*43 -K4004-*47 -K4006-*48 -K4010-40 -K4015-*40 -K4022-*40 -K4033-40 -K4047-*40 -K4068-*40 -K4100-*40 -K4150-40 -K4220-*40 -K4330-*40 $-K 4470-* 40$
		$20(\pm 5)$		

ELETTRONICA VENETA spa - 31045 Motta di Livenza (Treviso) ITALY
Via Postumia. 16 - Tel. +39 04227657 r.a. - Fax +390422861901
www.elettronicaveneta.com

All rights reserved. No part of this publication may be reproduced, stored in any retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior writen permission of Elettronica Veneta S.p.a.

[^0]:

[^1]: For dimensional drawings rater to page 10.5

