
Course 1 Slides

"Bad programmers worry about the code. Good programmers worry about
data structures and their relationships.“

Linus Torvalds

Lecturer: Radu Hobincu (radu.hobincu@upb.ro), Senior Software Engineer
at Ixia

Lab Assistant: Gabriel Neagoe (neagoegab@gmail.com), Senior Software
Engineer at Infineon Technologies

Course: 14 lectures covering C11 syntax, data structures and algorithms

Laboratory: 7 meetings designed to improve programming skill and
algorithms understanding and implementation

Resources:

• Development virtual machine (Linux Mint) for VirtualBox - LinuxDev:
ftp://zeus.arh.pub.ro/pub/VirtualMachines

• Extensive Algorithms Course- Cormen:
https://drive.google.com/file/d/0B0KC3c5boTpYLXY4UE9qUWJaTHM/edit?usp=sha
ring

Administrative Info

mailto:radu.hobincu@upb.ro
mailto:neagoegab@gmail.com
ftp://zeus.arh.pub.ro/pub/VirtualMachines
https://drive.google.com/file/d/0B0KC3c5boTpYLXY4UE9qUWJaTHM/edit?usp=sharing
https://drive.google.com/file/d/0B0KC3c5boTpYLXY4UE9qUWJaTHM/edit?usp=sharing
https://drive.google.com/file/d/0B0KC3c5boTpYLXY4UE9qUWJaTHM/edit?usp=sharing

Grading System (from a total of 100 points):

• 60 points are awarded for 6 home assignments each weighting 10% of the
final grade, specified during the lecture in every even week, starting with
week 2

• Homework assignments are electronically submitted and they are
compared with each other with a anti-plagiarism tool; if two or more
copies are detected, all submissions in question will be discarded and
no points will be awarded.

• If a student accumulates more than 50 points from homework
assignment, the lecturer may offer a final grade to the student with the
option of him not attending the final exam.

• 20 points are awarded by the lab assistant for activity during the lab

• 20 points are awarded during the final exam from which a minimum of 10
points must be earned in order to pass the subject

• 50 or more points are required in order to pass this subject

Administrative Info (cont’d)

Course 1: High Level Programming Languages: Compilers and Integrated
Developing Environments; C Language review, existing standards - C11; C vs.
C++;

Course 2: C Syntax Review – variables, constructs, functions and pointers;
Memory allocation: heap, stack and global variables

Course 3: Pseudo-code; Algorithms and complexity; Quantifying algorithm
quality; Recursion – Divide et Impera; Hanoi towers problem

Course 4: The array: advantages and disadvantages; Algorithms on the array:
Sorting (Selection Sort, Bubble Sort, Merge Sort, Quick Sort) and searching
(Binary search)

Course 5: The stack and the queue; Reversing a word

Course 6: Lists: advantages and disadvantages; Insertion, deletion, searching,
iteration and memory allocation

Course 7: Hash Maps: advantages and disadvantages; Hash functions and hash
collisions; Insertion, deletion, searching, iteration and memory allocation

Course Contents

Course 8: Trees and binary trees; Tree sort; Tree depth-first and breadth-first
search

Course 9: Graphs: directed and undirected; Storing graphs; Connected
components

Course 10: The minimum spanning tree of an undirected graph; Minimal cost
route; Eulerian and Hamiltonian graphs;

Course 11: Backtracking – generate all permutations of a sequence

Course 12: Dynamic programming

Course 13: Dynamic programming

Course 14: Q&A

Course Contents (cont’d)

• Digital processors have a very simple set of instructions they can
understand so developing a complex algorithm in assembly requires a
very large number of steps

• Each processor understands its own set of instructions but not others’ so
developing a software in assembly that runs on any processor is
impossible

• High level languages are used to accelerate software development by
providing a logical, compact and unified syntax for describing processor
behavior

• There are hundreds of high level programming languages but usually
each of them is optimized for a certain application domain:

• C – system/ kernel programming

• C++ – complex applications that require speed

• SQL – database design and management

• Java – complex applications that are not speed sensitive but are very dynamic and
require high portability, etc.

High Level Programming Languages

• Compilers are software programs that translate high level languages to assembly languages,
so they are, in fact, automated translation tools between two formal languages

• Compilers have a front-end, that depends on the HLL, and a back-end, that depends on the
processor/ set of instructions they are compiling for

Compilers

C language Intel x86_64 Assembly language

int add (int a, int b){
 return a + b;
}

 .file "test.c"
 .text
 .globl add
 .type add, @function
add:
.LFB0:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 movl %edi, -4(%rbp)
 movl %esi, -8(%rbp)
 movl -8(%rbp), %eax
 movl -4(%rbp), %edx
 addl %edx, %eax
 popq %rbp
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size add, .-add
 .ident "GCC: (Ubuntu/Linaro 4.8.1-
10ubuntu9) 4.8.1"
 .section .note.GNU-
stack,"",@progbits

Compiler

• Assemblers are software tools that encode the text mnemonics of an assembly language
instruction sequence into machine code

• Assemblers usually generate .obj files in Windows and .o files in Linux
• Assemblers are CPU specific

Assemblers

Intel x86_64 Assembly language X86_64 machine code

 .file "test.c"
 .text
 .globl add
 .type add, @function
add:
.LFB0:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 movl %edi, -4(%rbp)
 movl %esi, -8(%rbp)
 movl -8(%rbp), %eax
 movl -4(%rbp), %edx
 addl %edx, %eax
 popq %rbp
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size add, .-add
 .ident "GCC: (Ubuntu/Linaro 4.8.1-
10ubuntu9) 4.8.1"
 .section .note.GNU-stack,"",@progbits

0000000000000000 <add>:

 0: 55

 1: 48 89 e5

 4: 89 7d fc
 7: 89 75 f8
 a: 8b 45 f8
 d: 8b 55 fc
 10: 01 d0
 12: 5d

 13: c3

Assembler

Linkers

Linkers are used to “glue” one or more

object files together and generate an

executable file.

Linkers are required because not all the

functions that you need in your

program are compiled in the same file.

E.g.: the printf function is called to

print on the screen, but it is defined in

stdio.h header and compiled in the

standard C library.

object_file_1.o

object_file_2.o

Linker executable_file

GCC – The world’s most used C compiler

GCC (GNU Compiler Collection) is the

most famous and most used C compiler

in the world. It is open-source and it is

free to use.

It supports not only C, but also C++,

Objective-C, Fortran, Ada , Java and

Go.

GCC is a command line tool!

Integrated Development Environments
(IDEs)

IDEs are graphical user interfaces that

make use of a third party compiler to

enable a programmer to write the code

and compile within the same

application, instead of using an

external text editor and compiling

using command line.

• The initial development of C occurred at AT&T Bell Labs between 1969
and 1973

• In 1989, the C standard was ratified as ANSI X3.159-1989 "Programming
Language C". This version of the language is often referred to as ANSI C,
Standard C, or sometimes C89.

• The C standard was further revised in the late 1990s, leading to the
publication of ISO/IEC 9899:1999 in 1999, which is commonly referred to
as "C99“

• In 2007, work began on another revision of the C standard, informally
called "C1X" until its official publication on 2011-12-08. The C11 standard
adds numerous new features to C and the library, including type generic
macros, anonymous structures, improved Unicode support, atomic
operations, multi-threading, and bounds-checked functions.

• The reference for the C11 standard can be found here:
http://en.cppreference.com/w/c and standard itself here:
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

C Language Review

http://en.cppreference.com/w/c
http://en.cppreference.com/w/c
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

• C++ is a different language that introduces specific new features:

• Object oriented constructs: classes, inheritance, virtual functions, overriding

• Function overloading

• Operator overloading

• Streams

• Templates

• Exception handling

• The most important feature introduced in C++, are the availability of the
object oriented constructs; if you’re not using classes, then you should
not use C++ or claim you know it

What is C++?

Thank you!

* for next time, review C language syntax: variables,
functions, constructs and operators

