Data Structures an‘d\

Algorithms

Lecture 6

“Measuring programming progress by lines of co
building progress by weight.”

Lists

Lists are used to store data in fragmented memory areas

They are made up of nodes that hold data and references to other nodes

They have advantages and disadvantages over arrays and they are very
useful in certain application domains

Example of a singly linked list with integer values

Lists (cont'd)

Pros Cons

* Incremental memory allocation — * Norandom access! In order to
allocate nodes as you need them, node, you need to iterate t
delete the nodes as you're done with the nodes i
them node

* Continuous memory area is not * Mem
required for large data since the nodes (each nod
nodes can be allocated anywhere in the next o

the heap doubly linke

Lists (cont'd)

Arrays

* Continuous memory area

* Fixed allocated size at creation

* Random access inside the array

* Difficult to insert & delete elements

* All allocated memory is used to hold
data

Lists

* Fragmented memory area

references

Lists (cont'd)

* There are two types of lists:

* Singly linked lists —where a node only has a reference to the next node (there is no
way to return to the previous node)

* Doubly linked lists — where a node holds a reference to both the ne
previous node

struct node{ struct node{
int data; int data;

struct node * next; struct nod
}; struct no

};

Review: what is the size of these two structures?

Lists - iterating

* Foralist, we usually hold a pointer to the first and maybe the last node i
that list

* Iterating implies moving through the list from one node to the next,
processing it in some way, until we reach the last node
pointer

* Iteration is obviously done with a loop construct.

Example:

struct node *first = ..;
struct node *current _node = first;
while(current_node != NULL){
process _node(current_node);
current_node = current_node->next;

}

Exercise: rewrite the above example using a for loop.

Lists - inserting

Inserting an elementin a list is done by allocating memory for a new node
and then simply re-doing the connections between nodes;

Example:

void insert value after_node(int value, struct node* current
struct node * new _node = (struct node*)malloc(sizeo
new_node->value = value;
new_node->next = current_node->next;
current_node->next = new_node;

Exercise: do the same thing for a doubly linked list.

Lists - deleting

Deleting an element from a list is done by re-doing the connections betwee
nodes and then freeing the unused memory.

Example:

void remove next node(struct node* current node){
struct node * old node = current _node->next;
current_node->next = old node->next;
free(old node);

Exercise: do the same thing for a doubly linked list.

Lists - practice

* Search and display the indexes of all elements in a list that are equal to a
specified value. >

New tool: valgrind — used to analyze if your program frees all
memory and if you are trying to read or write outside alloc

* Sorting a list: which is the best algorithm for sorting a singly lin
Which is the easiest to implement? How about a doubly linked

