
Lecture 6

“Measuring programming progress by lines of code is like measuring aircraft
building progress by weight.”

-Bill Gates

• Lists are used to store data in fragmented memory areas

• They are made up of nodes that hold data and references to other nodes

• They have advantages and disadvantages over arrays and they are very
useful in certain application domains

Lists

Example of a singly linked list with integer values

Pros Cons

• No random access! In order to get to a
node, you need to iterate through all
the nodes in the list before the target
node

• Memory overhead for references to
nodes (each node holds a reference to
the next one) which is even larger for
doubly linked lists

• Incremental memory allocation –
allocate nodes as you need them,
delete the nodes as you’re done with
them

• Continuous memory area is not
required for large data since the
nodes can be allocated anywhere in
the heap

Lists (cont’d)

Arrays Lists

• Fragmented memory area

• Memory allocation is done
incrementally

• Only sequential access through the list

• Easy to insert & delete elements

• Memory overhead used to store
references to the next node

• Continuous memory area

• Fixed allocated size at creation

• Random access inside the array

• Difficult to insert & delete elements

• All allocated memory is used to hold
data

Lists (cont’d)

• There are two types of lists:

• Singly linked lists – where a node only has a reference to the next node (there is no
way to return to the previous node)

• Doubly linked lists – where a node holds a reference to both the next and the
previous node

Lists (cont’d)

struct node{
 int data;
 struct node * next;
};

struct node{
 int data;
 struct node * previous;
 struct node * next;
};

Review: what is the size of these two structures?

• For a list, we usually hold a pointer to the first and maybe the last node in
that list

• Iterating implies moving through the list from one node to the next,
processing it in some way, until we reach the last node, or a NULL next
pointer

• Iteration is obviously done with a loop construct.

Example:

struct node *first = …;
struct node *current_node = first;
while(current_node != NULL){
 process_node(current_node);
 current_node = current_node->next;
}

Exercise: rewrite the above example using a for loop.

Lists - iterating

Inserting an element in a list is done by allocating memory for a new node
and then simply re-doing the connections between nodes;

Example:

void insert_value_after_node(int value, struct node* current_node){
 struct node * new_node = (struct node*)malloc(sizeof(struct node));
 new_node->value = value;
 new_node->next = current_node->next;
 current_node->next = new_node;
}

Exercise: do the same thing for a doubly linked list.

Lists - inserting

Deleting an element from a list is done by re-doing the connections between
nodes and then freeing the unused memory.

Example:

void remove_next_node(struct node* current_node){
 struct node * old_node = current_node->next;
 current_node->next = old_node->next;
 free(old_node);
}

Exercise: do the same thing for a doubly linked list.

Lists - deleting

• Search and display the indexes of all elements in a list that are equal to a
specified value.

New tool: valgrind – used to analyze if your program frees all allocated
memory and if you are trying to read or write outside allocated memory.

• Sorting a list: which is the best algorithm for sorting a singly linked list?
Which is the easiest to implement? How about a doubly linked list?

Lists - practice

Thank you!

