
Lecture 2

“Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live.”

Anonymous

• Variables and data types

• Loops

• Branch control – conditional constructs

• Functions

• Preprocessor directives

• Input/ Output

• Usual Libraries

• Structures

• Pointers

• Debugging

C Language Review - Contents

• Variables are entities that can store different values during the life time
of a program

• Variables are always defined as:

data_type variable_name;

• The data type represents the set of values that a variable can take; For
example, a char type variable can take any integer value between -128
and 127.

• The variable name is an identifier that can be used to refer the
variable in the scope that it is defined in; A variable can exist and be used
only in a specific scope (area) in your program;

• An identifier, in C, must obey the following rules:

• It can contain any of the following characters: lowercase character (a-z), uppercase
character (A-Z), figure (0-9) and the underscore (_) character;

• It must not start with a figure.

C Language Review - Variables

• Variables can be stored in memory in three different
locations, depending on where and how they are defined:

1. Global Variables – are stored in the program area of the code (area
allocated when the executable is loaded in the memory); they are
visible in all the functions defined in the same file and that memory is
only freed at the end of the program.

2. Local variables – are allocated on the execution stack, when the
function they are defined in is called; they are only visible inside that
function and the memory is freed when the function returns (except
static local variables which behave that global variables).

3. Dynamically allocated variables – are allocated in the HEAP memory,
they exist until they are explicitly freed and they are referred to by
pointers;

HINT: Avoid using global variables, it’s a bad practice.

C Language Review – Variables (cont’d)

int globalIntVariable;

void doSomething(){

 int _localIntVariable;

 // Do something

}

int main(){

 doSomething();

 int *localPointer;

 localPointer = (int*)malloc(sizeof(int));

 // Lifetime of localPointer memory

 free(localPointer);

 return 0;

}

C Language Review – Variables (cont’d)

Home review:

What is the execution stack? How does it work?

C Language Review – Variables (cont’d)

char signed char unsigned
char

short

short int signed short signed short
int

unsigned
short

unsigned
short int

int signed int unsigned

unsigned int long long int signed long

signed long
int

unsigned
long

unsigned
long int

long long

long long int signed long
long

signed long
long int

unsigned
long long

unsigned
long long int

float double long double

• A data type can be:

• Primitive

• Structure

• Typedef

• A primitive data type is defined as:

sign_specifier size_modifier type

• Any of the three keywords can be
missing, but at least one needs to be
specified.

• The sign specifiers are: signed and
unsigned

• The size modifiers are short, long and
long long

• The types can be: char, int, float,
double

• Use the sizeof operator to find out the
size of a data type (or variable)

C Language Review – Data Types

Possible data types in C

 “error: ‘long long long’ is too long for GCC”
GCC compilation error

Type Size Signed Range

char 8 bits yes [-127; 128]

unsigned char 8 bits no [0; 255]

short 16 bits yes [−32768; 32767]

unsigned short 16 bits no [0; 65535]

int 32 bits yes [−2147483648; 2147483647]

unsigned int 32 bits no [0; 4294967295]

long 64 bits yes [−9223372036854775808; 9223372036854775807]

unsigned long 64 bits no [0; 18446744073709551615]

long long 64 bits yes [−9223372036854775808; 9223372036854775807]

unsigned long long 64 bits no [0; 18446744073709551615]

float 32 bits yes Floating point low precision

double 64 bits yes Floating point medium precision

long double 128 bits yes Floating point high precision

C Language Review – Data Types
(cont’d)

Home review:

1.How are negative numbers stored in
memory?

2.How are floating point numbers
stored in memory?

3. What is casting, and how is it used?

C Language Review – Data Types
(cont’d)

C provides three loop blocks:

1. while loops;

2. do – while loops

3. for loops

C Language Review - Loops

while do-while for

Description Verifies a condition at the
start of every loop, and
jumps after the while block
if the condition doesn’t
hold.

Same as “while”, only the
condition is checked at the
end of the loop

Complex loop statement containing an initialization expression,
executed once, before the first loop, a condition that is checked at
the start of each loop, similar to “while”, and a end-of-loop section
which is executed at the end of every loop.

Generic
Block

while(<condition>){
 <loop block>
}

do{
 <loop block>
}while(<condition>);

for(<init_exp>; <condition>; <end_loop_section>){
 <loop block>
}

Whenever a DECISION needs to be made, a conditional statement has to be
used:

1. if/ if-else statement

2. switch statement

3. ternary operator

C Language Review - Branch control –
conditional constructs

if switch ternary

Description Verifies a condition and executes
a section of code if the condition
holds. Optionally, an “else” block
can be specified, to be executed if
the condition does not hold.

A switch statement is initiated with a variable
expression and then, specifying a set of
possible values for that expression with
associated behavior. Optionally, it can have a
“default” statement, which is executed if none
of the other values match.

Simple operator that evaluates as different
expressions depending on a condition.

Generic
Block

if(<condition){
 <code_for_true>
}else{
 <code_for_false>
}

switch(<variable_exp>){
 case <possible_value_1>:
 <behavior_1>;
 break;
 case <possible_value_2>:
 <behavior_2>;
 break;
 //…
 default: <alternative_behavior>
}

<condition> ?
<expression_for_true> :
<expression_for_false>

• Functions are sections of code which can be reused by being called more
than one time;

• Similar to math functions, C functions have:

• A name, which is a C identifier (see variables, same rules apply)

• A return value (which in C is specified as a data type, or void, if the function does not
return anything)

• One or more parameters, or arguments, which in C is specified as a comma
separated list of variable definitions

C Language Review - Functions

Math C

𝑓: 𝑍2 → 𝑍
𝑓 𝑥, 𝑦 = 𝑥 + 𝑦

𝑎 ∈ 𝑍, 𝑎 = 𝑓(1,3)

int f(int x, int y){
 return x + y;
}

int a = f(1, 3);

• Preprocessor directives are executed before the
compilation takes place;

• All preprocessor directive start with the hash (#) sign:

• #include – used to include a header file, usually with function and
constants definitions in the program (stdio.h, stdlib.h, etc.)

• #define – used to define a macro which is a simple replacing of an
identifier with another string;

• #ifdef/ #ifndef/ #endif – are used to check if an identifier is defined
for the preprocessor, and include a section of code for compilation
or not (usually for debug purposes, or for different compilation
environments)

C Language Review - Preprocessor
directives

C Language Review - Preprocessor
directives (cont’d)
#include<stdio.h>

#define MY_INT 10

#define DEBUG

int main(){

 int a = 15;

 if(a == MY_INT){

 printf(“If a is 10, then this message gets
written!\n”);

 }

#ifdef DEBUG

 printf(“If DEBUG is defined, this message gets
printed too!\n”);

#endif

}

Functions used to read from the standard input stream and write to the standard output
stream:

• printf – used to print items on the standard output stream;

• scanf – used to read values from the standard input stream;

• gets_s – used to read a string containing white spaces, from the standard input stream

• getchar – used to read a single char from the standard input stream, no enter key is
required, like in the case of scanf

All these functions are defined in the header file stdio.h

See http://en.cppreference.com/w/c/io/fprintf, http://en.cppreference.com/w/c/io/getchar,
http://en.cppreference.com/w/c/io/gets

C Language Review - Input/ Output

http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/io/getchar
http://en.cppreference.com/w/c/io/getchar
http://en.cppreference.com/w/c/io/gets
http://en.cppreference.com/w/c/io/gets

The following libraries are usually needed for writing C programs:

• stdio.h – Standard Input/ Output library, used for functions related to I/O
from/ to keyboard, screen and files

• math.h – Mathematical related functions: cos, sin, sqrt, etc.

• stdlib.h – Standard Library containing conversion functions, pseudo-
random number generators, memory allocation functions, etc. (see
http://www.cplusplus.com/reference/cstdlib/)

• string.h – functions needed for processing character strings (see
http://www.cplusplus.com/reference/cstring/)

C Language Review – Usual Libraries

http://www.cplusplus.com/reference/cstdlib/
http://www.cplusplus.com/reference/cstdlib/
http://www.cplusplus.com/reference/cstring/
http://www.cplusplus.com/reference/cstring/

• Structures are assemblies of variables that have meaning together.

• They are “composed” data types:
struct Person{

 char * firstName;

 char * lastName;

 unsigned char age;

 char * address;

};

• “struct Person” now acts like a data type so we can use it to create
variables:

struct Person me;

• We can access “members” of a structure type variable by using the “.”
operator:

me.age = 30;

C Language Review -Structures

• Pointers are addresses in memory to certain types of data;

• All pointers are stores on 32 bits, on 32-bit CPUs and on 64 bits on 64-bit
CPUs.

• “int * pA;” means that pA doesn’t actually hold an integer, it holds an
address value and if we go and read the contents of the memory from
that address, we will get an integer;

• We can use casting to change the type of the data that we expect to read
from an address: this is a very serious security issue!

• Pointer arithmetic can be used to move from one address to the next.

• Operator to get an address for a variable is “&”

• Operator to get a value from an address is “*”

C Language Review – P inters

• Debugging a C program is a very important skill you must acquire

• Learn to read and interpret the error message

• Figure out if what you’re seeing is:

a) A preprocessor error

b) A compilation error

c) A linking error

• Use GDB (GNU DeBugger) and any GUI front-end to analyze your code
and run it step-by-step

C Language Review - Debugging

Thank you!

*For next class, please review arrays in C

