
CLB Shift Registers

MUX 4:1

A

B

f(A,B)

DIN

CLB Shift Registers

• Functionality present in SLICEM only

• Shift register length is 2N bits per LUT, where N

is the number of LUT inputs

• Output only through LUT

• Output Tap given by LUT inputs

HDL Guide to CLB Shift Registers

• No Reset

• Can have clock enable

• Synthesis tool will automatically use CLB shift

registers whenever possible (this behavior can

be specified in synthesis properties)

• Synthesis tool will most often insert a Slice

Flip-Flop as the last shifter stage, for better

timing

HDL Guide to CLB Shift Registers

• Complex functionality: Variable-Tap Shift

Register (Dynamic Shift Register)

• Output is selected based on an input address

• Synthesis tool will most often NOT insert an

output Slice Flip-Flop -> watch your timing

results

• Very useful for delay-line and synchronous

FIFO applications

FFs vs CLB Shift Registers

• We want to use CLB shift registers (SRLs=shift-

register-LUTs) when:

– Local delay line or shift register application (e.g.

LFSR)

– Synchronous Fifo

• We want to use FFs when:

– Global data transport (to segment routing delays)

– Fanout control – build a FF tree to reduce fanout

FFs vs CLB Shift Registers

• LFSR example: bits 0-8 implemented as SRL, bits 9-10
as SRL

• Reduced shift register from 10FFs to 2 LUTs and 2 FFs

FFs vs CLB Shift Registers

• Global data transport example

– Transport data from one side of the FPGA to the

other, 4ns delay

– Implement 8-stage shift register to segment delay

into 0.5ns

– Synthesis tool will insert an 8-stage SRL and long

routes (~2ns) between signal source, SRL and

destination

FFs vs CLB Shift Registers

• Fanout control example

– Signal has fanout of 128, destinations spread

across the FPGA

– Implement 7-deep logarithmic tree to reduce

fanout

– Synthesis tool will insert an 7-stage SRL and will

fanout the SRL output to 128 destinations

FFs vs CLB Shift Registers

• To prevent SRL insertion, use the KEEP attribute:

(* KEEP = "TRUE" *) reg [WIDTH-1:0] shift[LENGTH-1:0];

integer i;

always @(posedge clock) begin

 shift[0] <= in;

 for(i=1;i<LENGTH;i=i+1)

 shift[i] <= shift[i-1];

end

assign out = shift[LENGTH-1];

CLB Distributed Memory

MUX 4:1

A

B

Configuration Memory

f(A,B)

CLB Distributed Memory

MUX 4:1

Configuration Memory

Memory[Addr]

Wdata

WE

Addr

CLB Distributed Memory

• Some FPGA LUTs have user write access to their

configuration memory -> the LUT becomes a

memory read port

• A fraction of FPGA Slices (25%-50%) are SLICEM,

which contain LUTs with this capability

• Memory capacity is 2N x1bit per LUT, where N is

the number of LUT inputs

• Using multiple LUTs and Slice multiplexers,

various port configurations can be generated

CLB Distributed Memory

• Example: Virtex-6 Architecture CLB Ram Primitives

– Single-Port 32 x 1-bit RAM = 1LUT

– Dual-Port 32 x 1-bit RAM = 1LUT

– Quad-Port 32 x 2-bit RAM = 4LUTs

– Simple Dual-Port 32 x 6-bit RAM = 4LUTs

– Single-Port 64 x 1-bit RAM = 1LUT

– Dual-Port 64 x 1-bit RAM = 2LUTs

– Quad-Port 64 x 1-bit RAM = 4LUTs

– Simple Dual-Port 64 x 3-bit RAM = 4LUTs

– Single-Port 128 x 1-bit RAM = 2LUTs

– Dual-Port 128 x 1-bit RAM = 4LUTs

– Single-Port 256 x 1-bit RAM = 4LUTs

HDL Guide to CLB Memory

• The following attributes describe CLB
Memories, and must be present in your HDL
code:

– Synchronous write

– Asynchronous read

– 1 port is read-write

– Remaining ports are read-only

– Synchronous read can be implemented through
the use of Slice Flip-Flops

HDL Guide to CLB Memory

• Example: Dual-port 128x1 RAM in Virtex-4

– Implemented using 8 16x1D primitives

– Write enables for each 16x1D primitive is

computed using the global write enable and the

global address (1 extra LUT per 16x1D primitive)

– 8:1 output multiplexer per-port, implemented in

extra Slices

Further Reading

• Virtex-4 FPGA User Guide, Chapter 5

• Virtex-6 FPGA Configurable Logic Block User Guide

• Spartan-3 FPGA User Guide, Chapter 5

• Multiplexer Selection, Xilinx White Paper

• Get Smart About Reset: Think Local, not Global

• Get your Priorities Right: Make your Design Up to 50%
Smaller

• HDL Coding Practices to Accelerate Design
Performance

• Using Look-Up Tables as Shift Registers in Spartan-3
Generation FPGAs

