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Preface 

This book is an educational book and provides examples and exercises for the students in 
2nd year of bachelor's degree path, regarding the Digital Electronics topic. 

Chapter one provides an introduction into analog and digital signals and systems and is 
similar to the introduction in [1] 

Chapter two starts with exercises regarding 0-loop circuits. 

Chapter two and three are an introduction into basic digital and analog components, while 
chapter four is a discussion regarding complexity. Finally, chapter five is a walkthrough on 
design and implementation of a few mixed-signal systems used in real-life. This book uses a 
lot of pictures, and instead of citing each of them with their source, I opted to create a table 
of figures, where I give credit where credit is due. 
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1. Brief Introduction to Digital Circuits and 

Programming 
This chapter is similar to the first chapter in [1] and presents an introduction into digital 
signals and systems. There are advantages of converting analog signals into digital signals 
and back, otherwise one would not go through the trouble and cost of the conversion. 
These reasons will be highlighted at the end of this chapter. 

1.1 Analog signals 

All the studied systems in high-school’s physics classes were composed from analog 
equipment/devices (voltage supplies, current supplies, resistors, capacitors, inductors, 
lightbulbs etc.). They are circuits where, for example, the voltage varies continuously within 
some limits. A default system is an analog audio amplifier, which takes an analogue audio 
signal, amplifies it (keeps the shape, but delivers more power from the supply) and sends it 
to the speakers. Analogue signals are hard to store and process, so lately, digital signals are 
used increasingly.  

 

Figure 1. A digital signal (as a result of both sampling and quantization processes) 

 

1.2 Digital signals 

A digital signal is a signal which is discrete (as opposed to continuous) in both time and value. 
To create a time-discrete signal, one samples a continuous one. To create a value-discrete 
signal, one quantizes a continuous one.  
 
The number of samples taken in a unit of time is called sampling rate (e.g., 44100 Hz == 
samples per second, CD-quality). The number of bits (0 or 1 symbols) required to express 



[Digital] Electronics by Example: When Hardware Greets Software   
 

  14 
 

the amplitude is linked directly to the number of quantization steps (e.g., 16-bit for 2 to the 
power of 16 = 65536 steps, in the case of CD-audio quality) 
 

 

Figure 2. A time-sampled signal (as a result of sampling process) 

 

 

Figure 3. A value-sampled signal (as a result of quantization process) 

 
Digital signals are used because their expression uses numbers, which allows easy 
storage, copying (without loss) and processing. Immunity to noise can be obtained using 
mathematical instruments like error-detection and error-recovery processes. In addition, the 
quality (how similar it looks to the source analogue signal) can be chosen as a compromise. 
The more quantization steps we use (e.g. infinite) the more accurate the value is to the 
source signal’s value: however, these systems are usually used for the comfort of human life, 
so the trade-off will take into consideration human hearing or human sight etc. which will not 
push the quantization step too high (e.g. audio signals are good enough when using 64k 
steps, that is 16-bits per sample; video signals are good enough when colors are represented 
with 256 steps of Red, Green and Blue, therefore 3x 8-bits are enough for a pixel) Regarding 
the recovery of a continuous signal from the time-sampled signal, we have the sampling 
theorem which demonstrates that we can fully recover the original, as long as the sampling 
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rate is at least twice the maximum frequency contained in the original signal. For example, 
if one wants to recover up to 22 kHz audio signals (more than what the common human ear 
can hear), one should use 44 kHz sampling rate. 

1.3 Digit, number, and radix 

A radix-10 number uses a dictionary of 10 symbols (the ten digits) to express any number. 
For example, number 123 is made of 1 * 100 + 2 * 10 + 3. The radix of 10 is not the only 
known radix but is the most used by humans (arguably because we have ten fingers and can 
count easily using them). However, to use radix of 10, one must distinguish between 10 
different symbols (0-9). Digital electronics use radix of 2 because it is easier to distinguish 
between only two symbols, therefore it is easier to store information in this form. The trade-
offs that same number expressed in radix of 10 is around 3.5 times shorter that a radix of 2. 
For example, 9 is expressed in radix 2 with the sequence 1001, the number 127 is 11111111 
etc. The symbols available for the radix of 2 are 0 and 1, and they are called BInary digiTS, 
in short bits. Using 2 digits we can express numbers from 0 to 99 (that is, 100 different 
numbers). Using 2 bits we can express numbers from 0 to 3 (that is, 4 different numbers). 
Most common radices are 2 (binary), 8 (octal), 16 (hex), 10 (dec) and 256. We will mark 
numbers in radix 2, as prefixed with 0b e.g.: 0b1001 is number 9 in radix 10. The 
hexadecimal number will be prefixed with 0x e.g.: 0x10 is 16 in radix 10. 

Table 1. Multiples of bits / bytes according to JEDEC [2]. IEC 80000-13 standard changes the name for the power of two, 
by inserting a “bi” in the name: Kibibyte, Mebibyte, Gibibyte. 

Memory Unit (JEDEC) Memory unit (IEC) Description 

Bit Bit Binary Digit 1 or 0 

Kbit Kibibit 1024 bits 

Mbit Mebibit 1024 Kbits 

Byte Byte 8 bits 

KiloByte(KB) KibiByte (KiB) 1024 Bytes 

MegaByte(MB) MebiByte (MiB) 1024 KB 

GigaByte(GB) Gibibyte (GiB) 1024 MB 

TeraByte(TB) Tebibyte (TiB) 1024 GB 

PetaByte(PB) Pebibyte (PiB) 1024 TB 

HexaByte or exaByte (EB) Exbibyte (EiB) 1024 PB 

ZettaByte (ZB) Zebibyte (ZiB) 1024 EB 

YottaByte (YB) Yobiibyte (YiB) 1024 ZB 
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1.4 Digital systems    

 
Digital systems are designed to store and process and exchange information in digital form. 
They are found in a wide range of applications, including process control, communication 
systems, digital instruments, and consumer products. These systems/circuits may be 
classified by the number of appropriate loops enclosed within [4]; more loops will mean more 
autonomy, therefore smarter circuits. 

0 - loop circuits: contain only combinational circuits (logic gates) 

1 - loop circuits: the memory circuits, with behavioral autonomy in their own internal states; 
they are mainly used for storing 

2 - loops circuits: the automata, with the behavioral autonomy in their own state space, 
performing mainly the function of sequencing 

3 - loops circuits: the processors, with the autonomy in interpreting their own internal states; 
they perform the function of controlling 

4 - loops circuits: the computers, which interpret autonomously the programs according to 
the internal data 

n-loop circuits: systems in which the information is interpenetrated with the physical 
structures involved in processing it; the distinction between data and programs is surpassed 
and the main novelty is the self-organizing behavior. 

Any k-loop circuit can do everything any k-1 loop circuit can do. 

While 0 – loop circuits (combinational logic circuits) are quite easy to grasp as they are very 
simple in structure and behavior, the more evolved circuits, containing sequential circuits 
(with the clock signal driving them) are the ones used to handle complexity.  

Some common 0-loop circuits are: logic gates, multiplexers (sends the selected digital input 
to the output), demultiplexers (send the input to the selected output), decoders (sends logic 
1 to the selected output), adders, subtractors, ALUs (arithmetical-logical units), equality 
comparators, magnitude comparators etc. 

Some common sequential circuits are flip-flops (FFs), registers, counters/timers, and FSMs.  
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1.5 The advantages of using digital systems 

The world is analog, therefore, interacting with it, using digital systems, implies conversion 
between analog to digital and back. 

 

Figure 4. Analog to digital conversion, digital processing and digital to analog conversion example 

The main advantages of using a digital system: 

• Error correction: math (using numbers) can help a lot to find errors and correct them 
• Noise tolerance: copy of a copy may be digitally identical, whereas copy of a copy in 

analog storage is never the same. Keeping numbers in base2, allows maximum noise 
immunity as the digital system only has to discriminate between the two possible 
different symbols. In analog,  

• Compression: crunching numbers is possible when  
• Modularity: data transfers between digital modules, imply that data processing in a 

digital system is modular, therefore, there is a high chance of reusability in both 
hardware modules and software modules. Modular is good as it allows divide-et-
impera method of problem-solving. 

• Encryption: it is easy to scramble and obfuscate data in other data 
• Repeaters: low-cost repeaters and they only have to amplify two symbols accurately 

(the noise of the repeater can be high) 
• Compromise of space & compute power: it can be done in the field, not in the factory. 

Digital systems are easily configurable to save space and power with acceptable 
compromises on quality 
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2. The FPGA (Field Programmable Gate Array) 
The FPGA is an semiconductor device based on a matrix of reconfigurable logic blocks 
(CLBs) as seen in Figure 5. The advantage of this device is that it can be reconfigured to 
emulate any digital circuit of a certain complexity, in the field (not in the factory!). The 
interconnection can relay signals coming from any direction to signals going towards any 
direction.  The I/O cells allow signals to travel between the FPGA and outer world. 

 

Figure 5. Generic FPGA Architecture Overview 

An example of a configurable logic block (CLB) is exemplified below, in Figure 6. 

 

Figure 6. Xilinx CLB. Blue blocks are multiplexers, violet blocks are FFs and dark-green blocks are LUTs (look-up tables) 
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The software tools first convert code into RTL (register-transfer level, a design abstraction 
which models the synchronous circuit into flow of digital signals between registers and the 
logical operations performed on them), then from RTL into gates (during synthesis), and then 
it infers what resources of the FPGA should it use and how to link them in the physical FPGA 
device (during implementation). The implementation step is where it matters what specific 
FPGA chip will be used.  

 

Figure 7. FPGA development flow 
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Below, there is an FPGA board we will use further, to exemplify digital circuits. 

 

Figure 8. The Nexys 4 DDR FPGA board 

       

Figure 9. Nexys 4 DDR board features 
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Figure 10. GPIO devices on the Nexys4 DDR FPGA board 
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2. Zero-loop systems 

2.1 Prerequisites 

2.1.1 Binary and Boolean Logic 

Boolean algebra is a branch of algebra, where the values of the variables are truth values 
(true and false) usually coded as 1 and 0 and uses logical operators such as AND 
(conjunction), OR (disjunction), NOT (negation). It was introduced by English mathematician 
George Boole in the book “The Mathematical Analysis of Logic” in 1847. 

A logical operation is a function of two variables and may be expressed using a truth table as 
below: 

Table 2. A (general) logic operation’s truth table 

A B OP (A, B) 

FALSE FALSE ? 

FALSE TRUE ?? 

TRUE FALSE ??? 

TRUE TRUE ???? 

There are 16 dual-input single-output logical operations, 3 of which are most used (hence 
named).  The 16 number comes from the output: there are 4 bits of 0 or 1 (one for every 
combination of A and B), therefore, there are 16 different output configurations => 16 
different gates. Their truth table is as below: 

Table 3. Truth tables for AND, OR and NOT operations 

A B A and B A or B Not A 

FALSE FALSE FALSE FALSE TRUE 

FALSE TRUE FALSE TRUE TRUE 

TRUE FALSE FALSE TRUE FALSE 

TRUE TRUE TRUE TRUE FALSE 

 

Table 4. Truth tables for AND, OR and NOT operations (seen as 1-bit operations) 

A B A and B A or B Not A 

0 0 0 0 1 

0 1 0 1 1 

1 0 0 1 0 

1 1 1 1 0 
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2.1.2 Digital Gates 

The electronic circuits used to implement Boolean logic are the logical gates. Nowadays, all 
gates are made of transistors (a semiconductor device used to amplify or switch electrical 
signals and power). For example, the NOT gate is made of two CMOS transistors (a p-channel 
and n-channel MOS transistor), as seen in Figure 4 below.  

 

Figure 11. NOT gate (“inverter”) made of one pMOS (top) and one nMOS (bottom) transistor. 

Vdd is usually at least 1.8V over Vss, and Vss is usually ground. When A is “low,” pMOS 
transistor conducts current and draws Q close to Vdd (“high”) whereas nMOS is not 
conducting. When A is “high” level, nMOS conducts and ties Q to the Vss level (“low”).  

Engineers use the symbols of such gates, in logic schematics; these symbols, are ratified by 
international standards as seen in Figure 5. 

  

Figure 12. ANSI / IEC [5] (right) and MlL-STD-806B [6] (left) symbols foremost common 7/16 dual-input logic gates 
(elementary), with their names. 
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Figure 13. The truth tables for the most commonly used logic gates. 

All the 2-input gates are called elementary (or basic) gates. Similarly, for all circuits that are 
expressed in a iterative or recursive way, the very first instance is called “elementary”. 

2.1.3 Complexity in digital circuits 

A complex circuit is a circuit that has spatial complexity (structure) or behavior complexity 
or a combination of the two.  

To express spatial complexity, two metrics are used: 

• the SIZE (S) of the circuit (the number of elementary gates) 
• the DEPTH (D) of the circuit (the largest number of elementary gates passed through, 

when the signal goes from any input to any output) 

An elementary gate (2-input, 1-output) has the S = 1 and D = 1. 
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2.1.4 Complexity classes 

A more in-depth talk on complexity for algorithms may be found in [491], below is an extract 
of how complexity applies to circuits. Complexity is usually expressed as Big-O notation. The 
complexity of a function f is decided by finding another function g, which asymptotically 
bounds the f function. 

Mathematically, this is expressed as: if f(n) has the same complexity as g(n), then from n = 
k onwards, the c*g(n) >= f(n), where k is a point < infinity and c is a constant 

 

Figure 14. Representing a g(n) function which asymptotically bound f(n) function. 

To learn more about Big-Oh, Big-Theta and Big-Omega and their small variants, see [99]. A 
list of common complexity classes is listed below. O(1) means constant time, and is the best 
one can hope for: the algorithm runtime will not increase with data increase, the circuit will 
not increase its size no matter the number of inputs etc.

 

Figure 15. The O-notation complexity increases with the number of elements processed. O(1) and O(logn) are usually 
excellent complexities, O(n) is fair, and O(n*logn) is usually considered almost decent in algorithms and circuits 



[Digital] Electronics by Example: When Hardware Greets Software   
 

  26 
 

To better understand the complexity difference between O(logN) and O(N) we propose the 
next game: one thinks at a number from 0 to 100. Assuming another one tries to guess the 
number, with hints of “my number is higher” or “my number is lower”: 

• in O(N) algorithm (brute forcing all values) one will guess in at most 100 steps 
• whereas in O(logN) algorithm, same task will take at most 7 steps (assuming log2). 

This is not very impressive, but as one goes further (towards infinity), the advantage will 
become obvious. Assume the same game, but with numbers from 0 to 4 billion: 

• in O(N) algorithm it will take at most 4 billion steps 
• whereas in O(logN) it will take at most 32 steps! 

This is the power of the logarithm: it goes to infinity with N going to infinity, but much slower. 

To better understand how this applies to circuits, imagine an N-input AND gate, 
implemented with N-1 elementary gates, arranged in logN layers as below:  

 

Figure 16. A 16-input AND gate built from 2-input AND gates. 
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2.1.4 Verilog syntax 

S. Winberg and J. Taylor [8] summarized the most important syntax features of Verilog 
language in their cheat sheet: 

 

Figure 17. Verilog syntax cheat sheet (1/2) 
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Figure 18. Verilog syntax cheat sheet (2/2) 
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2.1.5 VHDL syntax 

 

Figure 19. VHDL cheat sheet (1/2) 
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Figure 20. VHDL cheat sheet (2/2) 
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To express the AND gate behavior in Figure 21 one has to write in Verilog the code or VHDL 
code below.  

 

Figure 21. 2-input AND gate 

module AndGate(input A, input B, output Q);

    assign Q = A & B;

endmodule

 

Figure 22. Verilog code (dataflow) for a 2-input AND gate 

library IEEE;
use IEEE.std_logic_1164.all;

-- Entity declaration
entity andGate is
    port(A : in std_logic;      -- AND gate input
         B : in std_logic;      -- AND gate input
         Q : out std_logic);    -- AND gate output
end andGate;

-- Dataflow Modelling Style
-- Architecture definition
architecture andLogic of andGate is
begin

    Q <= A AND B;
end andLogic;  

Figure 23. Verilog code (dataflow) for a 2-input AND gate 
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2.4 Theory & Exercises 

2.4.1 Multiple-input gates 

Using only elementary (2-input) gates, create a 4-input AND gate. Write code in both 
dataflow and structural manner. Describe the circuit in both in Verilog and VHDL language. 

 

Figure 24. 4-input AND gate from 2-input AND gates (dataflow) 

module And4GateDataflow(input AT, input BT, input CT, input DT, output QT);

    assign QT = AT & BT & CT & DT;

endmodule  

Figure 25. Verilog description for 4-input AND (dataflow) 

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity And4Gate is

    Port ( AT : in STD_LOGIC;

           BT : in STD_LOGIC;

           CT : in STD_LOGIC;

           DT : in STD_LOGIC;

           QT : out STD_LOGIC);

end And4Gate;

architecture and4Logic of And4Gate is

begin

    QT <= AT AND BT AND CT AND DT;

end and4Logic;  

Figure 26. VHDL description for 4-input AND (dataflow) 
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Figure 27. 4-input AND gate from 2-input AND gates (structural) 

module And2Gate(input A, input B, output Q);

    assign Q = A & B;

endmodule

module And4GateStructural(input AT, input BT, input CT, input DT, output QT);

    wire ABT;

    wire CDT;

    And2Gate(.A(AT), .B(BT), .Q(ABT));

    And2Gate(.A(CT), .B(DT), .Q(CDT));

    And2Gate(.A(ABT), .B(CDT), .Q(QT));

endmodule  

Figure 28.Verilog description of 4-input AND gate from 2-input AND gates (structural) 

A few notes here: assuming N is power of 2, the amount of elementary gates for an N-input 
AND or OR gate is a having log2 N layers each with half of the number of gates or previous 
layer. For example, an 16-input AND gate requires 4 layers having the N-1 gates, 
distributed as follows: 

• Layer 1: 8 elementary gates (all 16 inputs go into the inputs of the first layer) 
• Layer 2: 4 elementary gates 
• Layer 3: 2 elementary gates 
• Layer 4: 1 elementary gate (which gives the output of the circuit) 

Therefore, the SIZE of the circuit is O(N), and the DEPTH of the circuit is O(logN) 
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity And4Gate is

    Port ( AT : in STD_LOGIC;

           BT : in STD_LOGIC;

           CT : in STD_LOGIC;

           DT : in STD_LOGIC;

           QT : out STD_LOGIC);

end And4Gate;

architecture and4LogicStructural of And4Gate is

    component And2Gate 

    port(A, B: in std_logic;

Q: out std_logic);

    end component;

    signal and1_to_and3: std_logic;

    signal and2_to_and3: std_logic;

    

    begin

    

    and1: And2Gate port map(AT, BT, and1_to_and3);

    and2: And2Gate port map(CT, DT, and2_to_and3);

    and3: And2Gate port map(and1_to_and3, and2_to_and3, QT);  

Figure 29. VHDL description of 4-input AND gate from 2-input AND gates (structural) 

2.4.2 Elementary multiplexer 

A multiplexer is a circuit that outputs one of its inputs, depending on the selection. The 
elementary multiplexer is draws as follows:

 

Figure 30. MUX2 implemented with one NOT, two AND, one OR gate(s) 
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The implementation post-synthesis is done with one LUT, as shown in the  

 

Figure 31. LUT-based implementation of elementary mux, in FPGA 

module And2(output q, input a, input b);

    assign q = a & b;

endmodule

module Or2(output q, input a, input b);

    assign q = a | b;

endmodule

module Not1(output q, input a);

    assign q = ~a;

endmodule

module Mux2(output out, input selection, input in0, input in1);

    //assign out = (in0*!selection) | in1*selection;

    //assign out = (selection == 0) ? in0 : in1;

    

    //structural:    

    wire notselection;

    wire w1;

    wire w2;

    

    Not1 notgate0(.q(notselection), .a(selection));

    And2 andgate1(.q(w1), .a(notselection), .b(in0));

    And2 andgate2(.q(w2), .a(selection), .b(in1));

    Or2 orgate3(.q(out), .a(w1), .b(w2));  

Figure 32. Verilog description of an elementary MUX 
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Mux2 is

    Port(in0,in1,sel: in STD_LOGIC;

         outp : out STD_LOGIC);

end Mux2;

architecture Mux2a of Mux2 is

    component And2

    port(a,b: in STD_LOGIC;

         q: out STD_LOGIC);

    end component;

    

    component Or2

    port(a,b: in STD_LOGIC;

         q: out STD_LOGIC);

    end component;

    

    component Not1

    port(a: in STD_LOGIC;

         q: out STD_LOGIC);

    end component;

    

    signal w1: STD_LOGIC;

    signal w2: STD_LOGIC;

    signal nsel: STD_LOGIC;

    begin

        andgate1: And2 port map(a => in0, b => nsel, q => w1);

        andgate2: And2 port map(a => in1, b => sel, q => w2);

        notgate3: Not1 port map(a => sel, q => nsel);

        orgate4: Or2 port map(a => w1, b => w2, q => outp);

        

end Mux2a;  

Figure 33. VHDL description of an elementary MUX 
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Exercise: Using elementary MUX (2-input, 1-selection), describe a 4-input MUX. All data is 
1-bit wide. 

Solution: A hierarchical implementation will be made, with layered MUXes: first layer will 
have 2x MUXes, and the next layer just 1.  

 

Figure 34. Block schematic for MUX4 made of 3x MUX2 

As one may see, the number of layers is log2N => depth is O(logN), and the number of 
elementary circuits is N-1 => size is O(N). 
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Mux4 is

    Port(inp0, inp1, inp2, inp3: in STD_LOGIC;

        sel0,sel1: in STD_LOGIC;

        outpp : out STD_LOGIC);

end Mux4;

architecture Mux4a of Mux4 is

    component Mux2

    port(in0, in1: in STD_LOGIC;

         sel: in STD_LOGIC;

         outp: out STD_LOGIC);

    end component;

        

    signal wa: STD_LOGIC;

    signal wb: STD_LOGIC;

    begin

        mux2a: Mux2 port map(in0 => inp0, in1 => inp1, sel => sel0, outp => wa);

        mux2b: Mux2 port map(in0 => inp2, in1 => inp3, sel => sel0, outp => wb);        

        mux2c: Mux2 port map(in0 => wa, in1 => wb, sel => sel1, outp => outpp);

        

Figure 35. VHDL description of MUX4 made of MUX2 circuits 

 

 

 

 

 

 

 

Using only elementary …. Describe the circuit in both in Verilog and VHDL language. 
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3. One-loop systems 
Memory unit of 1 bit… 

 

 

4. Two-loop systems (automata) 
 

4.1 Prerequisites 

 

4.2 Theory 

 

4.3 TODO: other exercises 

Famous Chip & Dale squirrels want to go to Beautiful Almond Trees. For this, Chip hired 
you to design and implement an electronic map, for Dale, with the following block 
schematic: 
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The map is as follows: 

  



[Digital] Electronics by Example: When Hardware Greets Software   
 

  42 
 

To walk through the maze, the squirrel should go: 3 steps forward, 1 step to the right, 1 step to the left… 
 
ROM1 memory contains data regarding the direction where the squirrel should go: 
1 = Forward, 2 = Backwards, 4 = Left, 8 = Right 
 
ROM2 memory contains data regarding how many steps the squirrel go in that direction 
 
Iesirea out a numaratorului, isi schimba valoarea la fiecare FIX 1 secunda (veverita isi poate schimba 
directia doar 1 data pe secunda) 
 
Your task is to write Verilog code for the electronic map. 
Punctaj (din 50 de puncte): 6 + 7 + 7 + 4 p, 12p pentru top, 10p pentru "design" si 4p coding style. 
Numaratorul de timp NUM (6p): 
(1p) numaratorul are dimensiunea minima necesara a registrului de stare interna 
(1p) numaratorul are dimensiunea minima necesara a registrului de iesire 
(1p) registrul de stare interna se incrementeaza in ritmul corespunzator 
(1p) registrul de iesire se incrementeaza in ritmul corespunzator (1 secunda) 
(1p) conditia de numarare este corecta 
(1p) modulul verilog are denumirea ceruta (NUM) 
Memoria de tip ROM1 (7p): 
(1p) are numarul minim de adrese / locatii, numele cerut al intrarii 
(1p) are numarul minim de biti de iesire, numele cerut al iesirii 
(1p) conditia de citire e corecta 
(Xp) memoria are continutul corect in proportie de X*25%, (X e maxim 4) 
Memoria de tip ROM2 (7p) 
(1p) are numarul minim de adrese / locatii, numele cerut al intrarii 
(1p) are numarul minim de biti de iesire, numele cerut al iesirii 
(1p) conditia de citire e corecta 
(Xp) memoria are continutul corect in proportie de X*25%, (X e maxim 4) 
Transocodorul de tip TRANSCODER (4p) 
(1p) in are dimensiunea, tipul corect, numele cerut 
(1p) out_sel are dimensiunea si tipul corect, numele cerut 
(2p) out_seg are dimensiunea si tipul corect, numele cerut 
top (12p): 
(1p) memoria ROM1 este instantiata corect (tip, nume semnale) 
(1p) memoria ROM2 este instantiata corect (tip, nume semnale) 
(1p) numaratorul este instantiat corect (tip, nume semnale) 
(1p) transcodorul este instantiat corect (tip, nume semnale) 
(1p) legaturile NUM-ROM1 sunt corecte 
(1p) legaturile NUM-ROM2 sunt corecte 
(1p) legaturile ROM2-TRANSCODER sunt corecte 
(1p) top_clk se leaga corect in modulul de top 
(1p) ROM1 se leaga corect in exterior 
(1p) TRANSCODER se leaga corect in exterior (top: out_sel) 
(2p) TRANSCODER se leaga corect in exterior (top: out_seg) 
design (10p): 
(3p) design-ul este complet (ca numar / tip de componente) si nu are erori de sintaxa / sinteza / 
implementare 



[Digital] Electronics by Example: When Hardware Greets Software   
 

  43 
 

(3p) design-ul functioneaza pe FPGA asa cum s-a cerut (intre stari trec fix. X milisecunde si starile 
se succed in ordinea ceruta) 
(1p) corespondenta semnalului de ceas <> pin e corecta 
(1p) corespondenta biti de iesire <> pini e corecta (selectie digit) 
(2p) corespondenta biti de iesire <> pini e corecta (segmente) 
coding_style(4p): codul este usor de citit (indentat si spatiat similar cu exercitiul din laborator5) 
 

 
 

               
 
 
 

            
 
Timp de efectiv de lucru: 50 de minute. SUBIECT_5_FARA_RAM 
Extraterestrii din sistemul solar luminat de Betelgeuse, au fost de acord sa ne imprumute un 
generator ZPM. Drept multumire, oamenii au decis sa tina o serata pentru a le delecta 
“ochiurechea” (ochiurechea este un organ de simt al extraterestrilor, care transforma impulsurile 
luminoase in semnale electrice interpretate de creierul lor ca “sunete”) 
Este minisunea ta, sa reproduci o parte din Simfonia a 9-a pentru ochiurechile extraterestrilor. La 
sfarsitul melodiei, se poate introduce o pauza (niciun led aprins) convenabil de lunga apoi se repeta 
melodia. 
Obs1. 
• pentru a produce sunetul A, trebuie aprins LD0 
• penrtu a produce sunetul B, trebuie aprins LD0 si LD1 
• pentru a produce sunetul C, trebuie aprins LD0, LD1, LD2 
• pentru a produce sunetul D, trebuie aprinse LD0, LD1, LD2, LD3 
• si tot asa. 
Obs2. Durata notelor se considera: 
• "2 T" pentru notele care arata ca prima nota E (cea mai din stanga) 
• "3 T" pentru nota E cu punct (ultima nota E) 
• "1 T" pentru notele care arata ca penultima nota D 
• "4 T" pentru notele care arata ca ultima nota D (cea mai din dreapta) 
unde 1 T inseamna FIX 1 secunda. 
Obs3. Se considera echivalenta o nota de 4 T cu 2 de 2 T sau 4 de 1 T. 
Obs4. 
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Numaratorul NUM-COMP: 
• contine doua registre: 
◦ unul pentru starea interna (care se incrementeaza la fiecare perioada de ceas) 
◦ unul pentru iesire "out_num" (care se incrementeaza cand registrul de stare interna a 
numarat o secunda) 
• la fiecare incrementare a iesirii, registrul de stare interna se duce in 0 
• NUM-COMP numara cand "go" este 1 
• NUM-COMP isi mentine valoarea cand "hold" este 1 si "go" este 0 
"ROM1" este o memorie de tip ROM de dimensiune corespunzatoare (minima) 
"ROM2" este o memorie de tip ROM de dimensiune corespunzatoare (minima) 
"MUX" este un multiplexor 
Ceasul din sistem este ceasul generat de oscilatorul de 50 MHz de pe placa cu FPGA. 
Implementati in Verilog modulele din circuitul din figura, RESPECTAND numele semnalelor si ale 
modulelor / instantelor 
 
 

 
 
Timp de efectiv de lucru: 90 de minute. SUBIECT_3_FARA_RAM 
"Predator" vrea sa ajute METROREX sa construiasca o linie metrou pana la Aeroportul "Henri 
Coanda". In acest scop, vrea sa doneze regiei, un ceas cu timer care la terminarea timpului indicat, 
spulbera roca dura din drumul liniei de metrou. 
Indicatorul de timp de pe ceas afiseaza initial toate segmentele aprinse; el apoi marcheaza trecerea 
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timpului prin stingerea a cate unuia din segmente aprinse, la fiecare FIX 500 milisecunde 
La momentul T=0: 7 segmente aprinse 
La momentul T=1: 6 segmente aprinse 
La momentul T=2: 5 segmente aprinse 
La momentul T=3: 4 segmente aprinse 
La momentul T=4: 3 segmente aprinse 
La momentul T=5: 2 segmente aprinse 
La momentul T=6: 1 segment aprins 
La momentul T=7: 0 segmente aprinse 
"num1" este un numarator de tip NUM care numara in sus, din 1 in 1. 
"rom1" este o memorie de tip ROM de dimensiune minima. 
"dec1" este un decodor care produce mereu un singur bit de 0 pe iesire (arata care 1 digit este 
aprins, restul de 3 fiind stinsi) 
Ceasul din sistem este ceasul generat de oscilatorul de 50 MHz de pe placa cu FPGA. 
Implementati in Verilog modulele din circuitul din figura, RESPECTAND numele semnalelor si ale 
modulelor / instantelor 
 

 

 

 

Punctaj (din 50 de puncte): 6 + 9 + 3 + 12p pentru top, 16p pentru "design" si 4p coding style. 
Detaliu punctaj: 
numarator1 (6p): 
(1p) numaratorul are dimensiunea minima necesara 
(1p) iesirea numaratorului are dimensiunea corecta 
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(3p) iesirea numaratorului se schimba exact in ritmul specificat (timp) 
(1p) iesirea numaratorului se schimba in maniera necesara (valori) 
rom1 (9p): 
(1p) conditia de citire a memoriei este corecta 
(1p) dimensiunea memoriei e corecta (numar adrese) 
(1p) dimensiunea iesirii memoriei e corecta 
(1p) continutul memoriei este corespunzator 
(1p) intrarile sunt declarate ca intrari 
(1p) iesirile sunt declarate ca iesiri 
(3p) memoria e implementata corect si complet 
dec1 (3p): 
(1p) conditia de decodare este corecta 
(2p) decodorul e implementata corect si complet 
top (12 p): 
(2p) memoria rom1 este instantiata corect (denumire, tip, dimensiune) 
(2p) numaratorul num1 este instantiat corect (denumire, tip, dimensiune) 
(2p) decodorul dec1 este instantiat corect (denumire, tip, dimensiune) 
(2p) toate legaturile rom1 sunt corecte (denumire, tip, dimensiune) 
(2p) toate legaturile dec1 sunt corecte (denumire, tip, dimensiune) 
(2p) toate legaturile din exterior se duc spre blocurile corecte (denumire, tip, dimensiune) 
design (16p): 
(5p) design-ul este complet (ca numar / tip de componente) si nu are erori de sintaxa 
(6p) design-ul functioneaza pe FPGA asa cum s-a cerut (intre stari trec fix. 500 milisecunde si 
starile se succed in ordinea ceruta) 
(1p) corespondenta semnalului de ceas <> pin e corecta 
(2p) corespondenta butoane <> pini e corecta 
(2p) corespondenta biti de iesire <> pini e corecta 
coding_style(4p) 
(4p) codul este usor de citit (indentat si spatiat similar cu exercitiul din laborator5 
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15. Figure 15. The O-notation complexity increases with the number of elements 
processed. O(1) and O(logn) are usually excellent complexities, O(n) is fair, and 
O(n*logn) is usually considered almost decent in algorithms and circuits. Big-O 
Algorithm Complexity Cheat Sheet (Know Thy Complexities!) @ericdrowell. 
https://www.bigocheatsheet.com/ 

16. Figure 17. Verilog syntax cheat sheet (1/2) accessed online on 12.10.2023 
https://marceluda.github.io/rp_dummy/EEOF2018/Verilog_Cheat_Sheet.pdf 

17. Figure 18. Verilog syntax cheat sheet (2/2) accessed online on 12.10.2023 
https://marceluda.github.io/rp_dummy/EEOF2018/Verilog_Cheat_Sheet.pdf 

18. Figure 19. VHDL cheat sheet (1/2) accessed online on 08.10.2023: 
https://vhdlweb.com/static/vhdl_cheatsheet.pdf, and www.ece.tufts.edu/es/4 

19. Figure 20. VHDL cheat sheet (2/2) accessed online on 08.10.2023: 
https://vhdlweb.com/static/vhdl_cheatsheet.pdf, and www.ece.tufts.edu/es/4 

20. Figure 21. 2-input AND gate 
21. Figure 22. Verilog code (dataflow) for a 2-input AND gate 
22. Figure 23. Verilog code (dataflow) for a 2-input AND gate 
23. Figure 24. 4-input AND gate from 2-input AND gates (dataflow) 
24. Figure 25. Verilog description for 4-input AND (dataflow) 
25. Figure 27. 4-input AND gate from 2-input AND gates (structural) 
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