
Călin BÎRĂ

==

Digital Electronics by Example

When Hardware greets Hardware

[Digital] Electronics by Example: When Hardware Greets Software

 2

Preface

This book is an educational book and provides examples and exercises for the students in
2nd year of bachelor's degree path, regarding the Digital Electronics topic.

Chapter one provides an introduction into analog and digital signals and systems and is
similar to the introduction in [1]

Chapter two starts with exercises regarding 0-loop circuits.

Chapter two and three are an introduction into basic digital and analog components, while
chapter four is a discussion regarding complexity. Finally, chapter five is a walkthrough on
design and implementation of a few mixed-signal systems used in real-life. This book uses a
lot of pictures, and instead of citing each of them with their source, I opted to create a table
of figures, where I give credit where credit is due.

[Digital] Electronics by Example: When Hardware Greets Software

 3

Table of Contents
Preface .. 2

Table of Contents ... 3

List of Figures ... 5

List of Tables .. 7

List of Acronyms ... 8

1. Brief Introduction to Digital Circuits and Programming ... 13

1.1 Analog signals ... 13

1.2 Digital signals .. 13

1.3 Digit, number, and radix .. 15

1.4 Digital systems .. 16

1.5 The advantages of using digital systems .. 17

2. The FPGA (Field Programmable Gate Array) ... 18

2. Zero-loop systems .. 22

2.1 Prerequisites ... 22

2.1.1 Binary and Boolean Logic.. 22

2.1.2 Digital Gates ... 23

2.1.3 Complexity in digital circuits ... 24

2.1.4 Complexity classes ... 25

2.1.4 Verilog syntax ... 27

2.1.5 VHDL syntax ... 29

2.4 Theory & Exercises .. 32

2.4.1 Multiple-input gates .. 32

2.4.2 Elementary multiplexer ... 34

3. One-loop systems ... 40

4. Two-loop systems (automata) ... 40

4.1 Prerequisites ... 40

4.2 Theory .. 40

4.3 TODO: other exercises ... 40

Figure References .. 47

References ... 49

[Digital] Electronics by Example: When Hardware Greets Software

 4

[Digital] Electronics by Example: When Hardware Greets Software

 5

List of Figures
Figure 1. A digital signal (as a result of both sampling and quantization processes) 13

Figure 2. A time-sampled signal (as a result of sampling process) 14

Figure 3. A value-sampled signal (as a result of quantization process) 14

Figure 4. Analog to digital conversion, digital processing and digital to analog conversion
example ... 17

Figure 5. Generic FPGA Architecture Overview ... 18

Figure 6. Xilinx CLB. Blue blocks are multiplexers, violet blocks are FFs and dark-green
blocks are LUTs (look-up tables) ... 18

Figure 7. FPGA development flow ... 19

Figure 8. The Nexys 4 DDR FPGA board ... 20

Figure 9. Nexys 4 DDR board features .. 20

Figure 10. GPIO devices on the Nexys4 DDR FPGA board ... 21

Figure 11. NOT gate (“inverter”) made of one pMOS (top) and one nMOS (bottom)
transistor.. 23

Figure 12. ANSI / IEC [5] (right) and MlL-STD-806B [6] (left) symbols foremost common
7/16 dual-input logic gates (elementary), with their names. .. 23

Figure 13. The truth tables for the most commonly used logic gates. 24

Figure 14. Representing a g(n) function which asymptotically bound f(n) function. 25

Figure 15. The O-notation complexity increases with the number of elements processed.
O(1) and O(logn) are usually excellent complexities, O(n) is fair, and O(n*logn) is usually
considered almost decent in algorithms and circuits ... 25

Figure 16. A 16-input AND gate built from 2-input AND gates. .. 26

Figure 17. Verilog syntax cheat sheet (1/2) ... 27

Figure 18. Verilog syntax cheat sheet (2/2) ... 28

Figure 19. VHDL cheat sheet (1/2) .. 29

Figure 20. VHDL cheat sheet (2/2) .. 30

Figure 21. 2-input AND gate ... 31

Figure 22. Verilog code (dataflow) for a 2-input AND gate ... 31

Figure 23. Verilog code (dataflow) for a 2-input AND gate ... 31

Figure 24. 4-input AND gate from 2-input AND gates (dataflow) 32

Figure 25. Verilog description for 4-input AND (dataflow) .. 32

Figure 26. VHDL description for 4-input AND (dataflow) ... 32

Figure 27. 4-input AND gate from 2-input AND gates (structural).................................... 33

Figure 28.Verilog description of 4-input AND gate from 2-input AND gates (structural) ... 33

Figure 29. VHDL description of 4-input AND gate from 2-input AND gates (structural) 34

Figure 30. MUX2 implemented with one NOT, two AND, one OR gate(s) 34

Figure 31. LUT-based implementation of elementary mux, in FPGA 35

Figure 32. Verilog description of elementary MUX ... 35

[Digital] Electronics by Example: When Hardware Greets Software

 6

[Digital] Electronics by Example: When Hardware Greets Software

 7

List of Tables
Table 1. Multiples of bits / bytes according to JEDEC [2]. IEC 80000-13 standard changes
the name for the power of two, by inserting a “bi” in the name: Kibibyte, Mebibyte,
Gibibyte. .. 15

Table 2. A (general) logic operation’s truth table ... 22

Table 3. Truth tables for AND, OR and NOT operations ... 22

Table 4. Truth tables for AND, OR and NOT operations (seen as 1-bit operations) 22

[Digital] Electronics by Example: When Hardware Greets Software

 8

List of Acronyms
AACS Advanced Access Content System

AC Alternative Current

ACK Acknowledge

ADC Analog to digital converter

AES Advanced Encryption Standard

AGM Absorbent Glass Mat

AMD Advanced Micro Devices

ANSI American National Standards Institute

ARPA Advanced Research Projects Agency

ARPANET Advanced Research Projects Agency Network

ASIC Application Specific Integrated Circuit

BIOS Basic Input-Output System

BJT Bipolar Junction Transistor

BOD Brown-out detect

CBC Cipher Block Chaining

CD Compact Disk

CDIP Ceramic Dual Inline Package

CERN Conseil Européen pour la Recherche Nucléaire / European Council for Nuclear Research

CFB Cipher Feedback Mode

CMOS Complementary Metal-Oxide Semiconductor

COBOL Common Business-Oriented Language

CPHA Clock Phase

CPOL Clock Polarity

CPU Central Processing Unit

CRT Cathode-Ray Tube

CS Chip Select

CSNET Computer Science Network

CTFT Continuous Time Fourier Transform

CTR Counter

CUDA Compute Unified Device Architecture
CV Computer Vision

DAC Digital to Analog Converter

DC Direct Current

DDR Double Data Rate

DES Data Encryption Standard

DHCP Dynamic Host Configuration Protocol

DIP Dual In-line Package

DNA Deoxyribonucleic Acid

DNS Domain Name Service

[Digital] Electronics by Example: When Hardware Greets Software

 9

DRAM Dynamic Random Access Memory

DUT Device Under Test

EB Exabyte

ECB Electronic Code Book

ECC Error Correction Code

EMES Engineering of Modern Electric Systems
FET Field-Effect Transistor

FIFO First-In First-Out
FIPS Federal Information Processing Standard

FM Frequency Modulation

FTP File Transfer Protocol

GB Gigabyte

GHz Gigahertz

GND Ground

GP General Purpose

GPIO General Purpose Input/Output

GPU Graphical Processing Unit

GUI Graphical User Interface

HD High Definition

HDD Hard Disk Drive

HDL Hardware Description Language

HTML Hypertext Markup Language

I2C Inter-integrated circuit

IC Integrated circuit

ICPSC International Conference on Signal Processing and Communication

IDE Integrated development environment

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IR Infrared

ISO International Organization for Standardization

JBOD Just a Bunch of Disks

JEDEC Joint Electron Device Engineering Council

JS JavaScript

KB Kilobyte

kHz Kilohertz

LED Light-emitting diode

LIDAR Light Detection and Ranging

LSB Least Significant Bit/Byte

MATLAB Matrix Laboratory

MB Megabyte

MCU Microcontroller Unit

[Digital] Electronics by Example: When Hardware Greets Software

 10

MHz Megahertz

MIL-STD Military Standard

MIT Massachusetts Institute of Technology

MOhm Megohm

MOS Metal-Oxide Semiconductor

MSB Most Significand Bit/Byte

MW Megawatt

NACK Not Acknowledge

NAND Not AND

NIST National Institute of Standards and Technology

NO Normal Open

NOM Nominal

NOR Not OR

NP Non-polynomial

NSF National Science Foundation

NTC Negative Temperature Coefficient
NTP Network Time Protocol

NVM Non-Volatile Memory

OFB Output Feedback Mode

OOK On/Off Keying

OP Operation

OSI Open Systems Interconnection Model

OTP One Time Password

OUT Output

PB Petabyte

PC Personal Computer

PCB Printed Circuit Board

PCBC Propagating or Plaintext Cipher-Block Chaining

PCI Peripheral Component Interconnect

PDIP Plastic Dual Inline Package

PHP PHP: Hypertext Preprocessor

PIR Passive Infrared

PN Part Number

PTC Positive Temperature Coefficient

PTP Picture Transfer Protocol

QSPI Quad SPI

R,G,B Red, Green, Blue

RADAR Radio Detection and Ranging

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RC Remote Control

[Digital] Electronics by Example: When Hardware Greets Software

 11

RDS(on) Resistance from drain to source, when in on state

RF Radio Frequency

RFC Request for Comments

RFID Radio Frequency Identification

RGB Red Green Blue

RH Relative humidity

RMS Root Means Square

RNA Ribonucleic Acid

RSA Rivest-Shamir-Adleman (Encryption)

RX Receiver or reception

SAR Successive approximative register
SATA Serial Advanced Technology Attachment
SCK Serial Clock
SCL Serial Clock
SCR Silicon controlled rectifier

SD Secure Digital

SDA Serial Data

SDRAM Synchronous Dynamic Random Access Memory

SFTP Secure File Transfer Protocol

SMD Surface Mount Device

SNTP Simple Network Time Protocol

SOIC Small Outline Integrated Circuit

SPDT Single Pole Double Throw

SPI Serial Peripheral Interface

SPST Single Pole Single Throw

SQL Structured Query Language

SRAM Static Random Access Memory

SS Slave Select

SSD Solid State Drive

SSH Secure Shell

STFT Short Term Fourier Transform

TB Terabyte

TCP Transmission Control Protocol

TCR Temperature Coefficient of Resistance

TDP Thermal Design Power

THT Through Hole Technology

TIOBE The Importance Of Being Earnest

TTL Transistor-to-transistor logic

TV Television

TVS Transient Voltage Suppressors

TWI Two Wire Interface

[Digital] Electronics by Example: When Hardware Greets Software

 12

TX Transmitter / Transmission

UART Universal Asynchronous Receiver/Transmitter

UDIMM Unbuffered Dual In-Line Memory Module

UDP User Datagram Protocol

UHF Ultra-High Frequencies

URL Uniform Resource Locator

US United States

USA United States of America

USART Universal Synchronous/Asynchronous Receiver/Transmitter

USB Universal Serial Bus

UV Ultraviolet

V Volt
VHDL VHSIC Hardware Description Language

VHF Very High Frequency

VI Input Voltage

VIH Input Voltage (high, minimum)

VIL Input Voltage (low, maximum)

VO Output Voltage

VOH Output Voltage (high, minimum)

VOL Output Voltage (low, maximum)

WAN Wide-Area Network

WDT Watchdog Timer

WWW World-Wide Web

XOR Exclusive OR

YB Yottabyte

ZB Zettabyte

[Digital] Electronics by Example: When Hardware Greets Software

 13

1. Brief Introduction to Digital Circuits and

Programming
This chapter is similar to the first chapter in [1] and presents an introduction into digital
signals and systems. There are advantages of converting analog signals into digital signals
and back, otherwise one would not go through the trouble and cost of the conversion.
These reasons will be highlighted at the end of this chapter.

1.1 Analog signals

All the studied systems in high-school’s physics classes were composed from analog
equipment/devices (voltage supplies, current supplies, resistors, capacitors, inductors,
lightbulbs etc.). They are circuits where, for example, the voltage varies continuously within
some limits. A default system is an analog audio amplifier, which takes an analogue audio
signal, amplifies it (keeps the shape, but delivers more power from the supply) and sends it
to the speakers. Analogue signals are hard to store and process, so lately, digital signals are
used increasingly.

Figure 1. A digital signal (as a result of both sampling and quantization processes)

1.2 Digital signals

A digital signal is a signal which is discrete (as opposed to continuous) in both time and value.
To create a time-discrete signal, one samples a continuous one. To create a value-discrete
signal, one quantizes a continuous one.

The number of samples taken in a unit of time is called sampling rate (e.g., 44100 Hz ==
samples per second, CD-quality). The number of bits (0 or 1 symbols) required to express

[Digital] Electronics by Example: When Hardware Greets Software

 14

the amplitude is linked directly to the number of quantization steps (e.g., 16-bit for 2 to the
power of 16 = 65536 steps, in the case of CD-audio quality)

Figure 2. A time-sampled signal (as a result of sampling process)

Figure 3. A value-sampled signal (as a result of quantization process)

Digital signals are used because their expression uses numbers, which allows easy
storage, copying (without loss) and processing. Immunity to noise can be obtained using
mathematical instruments like error-detection and error-recovery processes. In addition, the
quality (how similar it looks to the source analogue signal) can be chosen as a compromise.
The more quantization steps we use (e.g. infinite) the more accurate the value is to the
source signal’s value: however, these systems are usually used for the comfort of human life,
so the trade-off will take into consideration human hearing or human sight etc. which will not
push the quantization step too high (e.g. audio signals are good enough when using 64k
steps, that is 16-bits per sample; video signals are good enough when colors are represented
with 256 steps of Red, Green and Blue, therefore 3x 8-bits are enough for a pixel) Regarding
the recovery of a continuous signal from the time-sampled signal, we have the sampling
theorem which demonstrates that we can fully recover the original, as long as the sampling

[Digital] Electronics by Example: When Hardware Greets Software

 15

rate is at least twice the maximum frequency contained in the original signal. For example,
if one wants to recover up to 22 kHz audio signals (more than what the common human ear
can hear), one should use 44 kHz sampling rate.

1.3 Digit, number, and radix

A radix-10 number uses a dictionary of 10 symbols (the ten digits) to express any number.
For example, number 123 is made of 1 * 100 + 2 * 10 + 3. The radix of 10 is not the only
known radix but is the most used by humans (arguably because we have ten fingers and can
count easily using them). However, to use radix of 10, one must distinguish between 10
different symbols (0-9). Digital electronics use radix of 2 because it is easier to distinguish
between only two symbols, therefore it is easier to store information in this form. The trade-
offs that same number expressed in radix of 10 is around 3.5 times shorter that a radix of 2.
For example, 9 is expressed in radix 2 with the sequence 1001, the number 127 is 11111111
etc. The symbols available for the radix of 2 are 0 and 1, and they are called BInary digiTS,
in short bits. Using 2 digits we can express numbers from 0 to 99 (that is, 100 different
numbers). Using 2 bits we can express numbers from 0 to 3 (that is, 4 different numbers).
Most common radices are 2 (binary), 8 (octal), 16 (hex), 10 (dec) and 256. We will mark
numbers in radix 2, as prefixed with 0b e.g.: 0b1001 is number 9 in radix 10. The
hexadecimal number will be prefixed with 0x e.g.: 0x10 is 16 in radix 10.

Table 1. Multiples of bits / bytes according to JEDEC [2]. IEC 80000-13 standard changes the name for the power of two,
by inserting a “bi” in the name: Kibibyte, Mebibyte, Gibibyte.

Memory Unit (JEDEC) Memory unit (IEC) Description

Bit Bit Binary Digit 1 or 0

Kbit Kibibit 1024 bits

Mbit Mebibit 1024 Kbits

Byte Byte 8 bits

KiloByte(KB) KibiByte (KiB) 1024 Bytes

MegaByte(MB) MebiByte (MiB) 1024 KB

GigaByte(GB) Gibibyte (GiB) 1024 MB

TeraByte(TB) Tebibyte (TiB) 1024 GB

PetaByte(PB) Pebibyte (PiB) 1024 TB

HexaByte or exaByte (EB) Exbibyte (EiB) 1024 PB

ZettaByte (ZB) Zebibyte (ZiB) 1024 EB

YottaByte (YB) Yobiibyte (YiB) 1024 ZB

[Digital] Electronics by Example: When Hardware Greets Software

 16

1.4 Digital systems

Digital systems are designed to store and process and exchange information in digital form.
They are found in a wide range of applications, including process control, communication
systems, digital instruments, and consumer products. These systems/circuits may be
classified by the number of appropriate loops enclosed within [4]; more loops will mean more
autonomy, therefore smarter circuits.

0 - loop circuits: contain only combinational circuits (logic gates)

1 - loop circuits: the memory circuits, with behavioral autonomy in their own internal states;
they are mainly used for storing

2 - loops circuits: the automata, with the behavioral autonomy in their own state space,
performing mainly the function of sequencing

3 - loops circuits: the processors, with the autonomy in interpreting their own internal states;
they perform the function of controlling

4 - loops circuits: the computers, which interpret autonomously the programs according to
the internal data

n-loop circuits: systems in which the information is interpenetrated with the physical
structures involved in processing it; the distinction between data and programs is surpassed
and the main novelty is the self-organizing behavior.

Any k-loop circuit can do everything any k-1 loop circuit can do.

While 0 – loop circuits (combinational logic circuits) are quite easy to grasp as they are very
simple in structure and behavior, the more evolved circuits, containing sequential circuits
(with the clock signal driving them) are the ones used to handle complexity.

Some common 0-loop circuits are: logic gates, multiplexers (sends the selected digital input
to the output), demultiplexers (send the input to the selected output), decoders (sends logic
1 to the selected output), adders, subtractors, ALUs (arithmetical-logical units), equality
comparators, magnitude comparators etc.

Some common sequential circuits are flip-flops (FFs), registers, counters/timers, and FSMs.

[Digital] Electronics by Example: When Hardware Greets Software

 17

1.5 The advantages of using digital systems

The world is analog, therefore, interacting with it, using digital systems, implies conversion
between analog to digital and back.

Figure 4. Analog to digital conversion, digital processing and digital to analog conversion example

The main advantages of using a digital system:

• Error correction: math (using numbers) can help a lot to find errors and correct them
• Noise tolerance: copy of a copy may be digitally identical, whereas copy of a copy in

analog storage is never the same. Keeping numbers in base2, allows maximum noise
immunity as the digital system only has to discriminate between the two possible
different symbols. In analog,

• Compression: crunching numbers is possible when
• Modularity: data transfers between digital modules, imply that data processing in a

digital system is modular, therefore, there is a high chance of reusability in both
hardware modules and software modules. Modular is good as it allows divide-et-
impera method of problem-solving.

• Encryption: it is easy to scramble and obfuscate data in other data
• Repeaters: low-cost repeaters and they only have to amplify two symbols accurately

(the noise of the repeater can be high)
• Compromise of space & compute power: it can be done in the field, not in the factory.

Digital systems are easily configurable to save space and power with acceptable
compromises on quality

[Digital] Electronics by Example: When Hardware Greets Software

 18

2. The FPGA (Field Programmable Gate Array)
The FPGA is an semiconductor device based on a matrix of reconfigurable logic blocks
(CLBs) as seen in Figure 5. The advantage of this device is that it can be reconfigured to
emulate any digital circuit of a certain complexity, in the field (not in the factory!). The
interconnection can relay signals coming from any direction to signals going towards any
direction. The I/O cells allow signals to travel between the FPGA and outer world.

Figure 5. Generic FPGA Architecture Overview

An example of a configurable logic block (CLB) is exemplified below, in Figure 6.

Figure 6. Xilinx CLB. Blue blocks are multiplexers, violet blocks are FFs and dark-green blocks are LUTs (look-up tables)

[Digital] Electronics by Example: When Hardware Greets Software

 19

The software tools first convert code into RTL (register-transfer level, a design abstraction
which models the synchronous circuit into flow of digital signals between registers and the
logical operations performed on them), then from RTL into gates (during synthesis), and then
it infers what resources of the FPGA should it use and how to link them in the physical FPGA
device (during implementation). The implementation step is where it matters what specific
FPGA chip will be used.

Figure 7. FPGA development flow

[Digital] Electronics by Example: When Hardware Greets Software

 20

Below, there is an FPGA board we will use further, to exemplify digital circuits.

Figure 8. The Nexys 4 DDR FPGA board

Figure 9. Nexys 4 DDR board features

[Digital] Electronics by Example: When Hardware Greets Software

 21

Figure 10. GPIO devices on the Nexys4 DDR FPGA board

[Digital] Electronics by Example: When Hardware Greets Software

 22

2. Zero-loop systems

2.1 Prerequisites

2.1.1 Binary and Boolean Logic

Boolean algebra is a branch of algebra, where the values of the variables are truth values
(true and false) usually coded as 1 and 0 and uses logical operators such as AND
(conjunction), OR (disjunction), NOT (negation). It was introduced by English mathematician
George Boole in the book “The Mathematical Analysis of Logic” in 1847.

A logical operation is a function of two variables and may be expressed using a truth table as
below:

Table 2. A (general) logic operation’s truth table

A B OP (A, B)

FALSE FALSE ?

FALSE TRUE ??

TRUE FALSE ???

TRUE TRUE ????

There are 16 dual-input single-output logical operations, 3 of which are most used (hence
named). The 16 number comes from the output: there are 4 bits of 0 or 1 (one for every
combination of A and B), therefore, there are 16 different output configurations => 16
different gates. Their truth table is as below:

Table 3. Truth tables for AND, OR and NOT operations

A B A and B A or B Not A

FALSE FALSE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE TRUE FALSE

TRUE TRUE TRUE TRUE FALSE

Table 4. Truth tables for AND, OR and NOT operations (seen as 1-bit operations)

A B A and B A or B Not A

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

[Digital] Electronics by Example: When Hardware Greets Software

 23

2.1.2 Digital Gates

The electronic circuits used to implement Boolean logic are the logical gates. Nowadays, all
gates are made of transistors (a semiconductor device used to amplify or switch electrical
signals and power). For example, the NOT gate is made of two CMOS transistors (a p-channel
and n-channel MOS transistor), as seen in Figure 4 below.

Figure 11. NOT gate (“inverter”) made of one pMOS (top) and one nMOS (bottom) transistor.

Vdd is usually at least 1.8V over Vss, and Vss is usually ground. When A is “low,” pMOS
transistor conducts current and draws Q close to Vdd (“high”) whereas nMOS is not
conducting. When A is “high” level, nMOS conducts and ties Q to the Vss level (“low”).

Engineers use the symbols of such gates, in logic schematics; these symbols, are ratified by
international standards as seen in Figure 5.

Figure 12. ANSI / IEC [5] (right) and MlL-STD-806B [6] (left) symbols foremost common 7/16 dual-input logic gates
(elementary), with their names.

[Digital] Electronics by Example: When Hardware Greets Software

 24

Figure 13. The truth tables for the most commonly used logic gates.

All the 2-input gates are called elementary (or basic) gates. Similarly, for all circuits that are
expressed in a iterative or recursive way, the very first instance is called “elementary”.

2.1.3 Complexity in digital circuits

A complex circuit is a circuit that has spatial complexity (structure) or behavior complexity
or a combination of the two.

To express spatial complexity, two metrics are used:

• the SIZE (S) of the circuit (the number of elementary gates)
• the DEPTH (D) of the circuit (the largest number of elementary gates passed through,

when the signal goes from any input to any output)

An elementary gate (2-input, 1-output) has the S = 1 and D = 1.

[Digital] Electronics by Example: When Hardware Greets Software

 25

2.1.4 Complexity classes

A more in-depth talk on complexity for algorithms may be found in [491], below is an extract
of how complexity applies to circuits. Complexity is usually expressed as Big-O notation. The
complexity of a function f is decided by finding another function g, which asymptotically
bounds the f function.

Mathematically, this is expressed as: if f(n) has the same complexity as g(n), then from n =
k onwards, the c*g(n) >= f(n), where k is a point < infinity and c is a constant

Figure 14. Representing a g(n) function which asymptotically bound f(n) function.

To learn more about Big-Oh, Big-Theta and Big-Omega and their small variants, see [99]. A
list of common complexity classes is listed below. O(1) means constant time, and is the best
one can hope for: the algorithm runtime will not increase with data increase, the circuit will
not increase its size no matter the number of inputs etc.

Figure 15. The O-notation complexity increases with the number of elements processed. O(1) and O(logn) are usually
excellent complexities, O(n) is fair, and O(n*logn) is usually considered almost decent in algorithms and circuits

[Digital] Electronics by Example: When Hardware Greets Software

 26

To better understand the complexity difference between O(logN) and O(N) we propose the
next game: one thinks at a number from 0 to 100. Assuming another one tries to guess the
number, with hints of “my number is higher” or “my number is lower”:

• in O(N) algorithm (brute forcing all values) one will guess in at most 100 steps
• whereas in O(logN) algorithm, same task will take at most 7 steps (assuming log2).

This is not very impressive, but as one goes further (towards infinity), the advantage will
become obvious. Assume the same game, but with numbers from 0 to 4 billion:

• in O(N) algorithm it will take at most 4 billion steps
• whereas in O(logN) it will take at most 32 steps!

This is the power of the logarithm: it goes to infinity with N going to infinity, but much slower.

To better understand how this applies to circuits, imagine an N-input AND gate,
implemented with N-1 elementary gates, arranged in logN layers as below:

Figure 16. A 16-input AND gate built from 2-input AND gates.

[Digital] Electronics by Example: When Hardware Greets Software

 27

2.1.4 Verilog syntax

S. Winberg and J. Taylor [8] summarized the most important syntax features of Verilog
language in their cheat sheet:

Figure 17. Verilog syntax cheat sheet (1/2)

[Digital] Electronics by Example: When Hardware Greets Software

 28

Figure 18. Verilog syntax cheat sheet (2/2)

[Digital] Electronics by Example: When Hardware Greets Software

 29

2.1.5 VHDL syntax

Figure 19. VHDL cheat sheet (1/2)

[Digital] Electronics by Example: When Hardware Greets Software

 30

Figure 20. VHDL cheat sheet (2/2)

[Digital] Electronics by Example: When Hardware Greets Software

 31

To express the AND gate behavior in Figure 21 one has to write in Verilog the code or VHDL
code below.

Figure 21. 2-input AND gate

module AndGate(input A, input B, output Q);

 assign Q = A & B;

endmodule

Figure 22. Verilog code (dataflow) for a 2-input AND gate

library IEEE;
use IEEE.std_logic_1164.all;

-- Entity declaration
entity andGate is
 port(A : in std_logic; -- AND gate input
 B : in std_logic; -- AND gate input
 Q : out std_logic); -- AND gate output
end andGate;

-- Dataflow Modelling Style
-- Architecture definition
architecture andLogic of andGate is
begin

 Q <= A AND B;
end andLogic;

Figure 23. Verilog code (dataflow) for a 2-input AND gate

[Digital] Electronics by Example: When Hardware Greets Software

 32

2.4 Theory & Exercises

2.4.1 Multiple-input gates

Using only elementary (2-input) gates, create a 4-input AND gate. Write code in both
dataflow and structural manner. Describe the circuit in both in Verilog and VHDL language.

Figure 24. 4-input AND gate from 2-input AND gates (dataflow)

module And4GateDataflow(input AT, input BT, input CT, input DT, output QT);

 assign QT = AT & BT & CT & DT;

endmodule

Figure 25. Verilog description for 4-input AND (dataflow)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity And4Gate is

 Port (AT : in STD_LOGIC;

 BT : in STD_LOGIC;

 CT : in STD_LOGIC;

 DT : in STD_LOGIC;

 QT : out STD_LOGIC);

end And4Gate;

architecture and4Logic of And4Gate is

begin

 QT <= AT AND BT AND CT AND DT;

end and4Logic;

Figure 26. VHDL description for 4-input AND (dataflow)

[Digital] Electronics by Example: When Hardware Greets Software

 33

Figure 27. 4-input AND gate from 2-input AND gates (structural)

module And2Gate(input A, input B, output Q);

 assign Q = A & B;

endmodule

module And4GateStructural(input AT, input BT, input CT, input DT, output QT);

 wire ABT;

 wire CDT;

 And2Gate(.A(AT), .B(BT), .Q(ABT));

 And2Gate(.A(CT), .B(DT), .Q(CDT));

 And2Gate(.A(ABT), .B(CDT), .Q(QT));

endmodule

Figure 28.Verilog description of 4-input AND gate from 2-input AND gates (structural)

A few notes here: assuming N is power of 2, the amount of elementary gates for an N-input
AND or OR gate is a having log2 N layers each with half of the number of gates or previous
layer. For example, an 16-input AND gate requires 4 layers having the N-1 gates,
distributed as follows:

• Layer 1: 8 elementary gates (all 16 inputs go into the inputs of the first layer)
• Layer 2: 4 elementary gates
• Layer 3: 2 elementary gates
• Layer 4: 1 elementary gate (which gives the output of the circuit)

Therefore, the SIZE of the circuit is O(N), and the DEPTH of the circuit is O(logN)

[Digital] Electronics by Example: When Hardware Greets Software

 34

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity And4Gate is

 Port (AT : in STD_LOGIC;

 BT : in STD_LOGIC;

 CT : in STD_LOGIC;

 DT : in STD_LOGIC;

 QT : out STD_LOGIC);

end And4Gate;

architecture and4LogicStructural of And4Gate is

 component And2Gate

 port(A, B: in std_logic;

Q: out std_logic);

 end component;

 signal and1_to_and3: std_logic;

 signal and2_to_and3: std_logic;

 begin

 and1: And2Gate port map(AT, BT, and1_to_and3);

 and2: And2Gate port map(CT, DT, and2_to_and3);

 and3: And2Gate port map(and1_to_and3, and2_to_and3, QT);

Figure 29. VHDL description of 4-input AND gate from 2-input AND gates (structural)

2.4.2 Elementary multiplexer

A multiplexer is a circuit that outputs one of its inputs, depending on the selection. The
elementary multiplexer is draws as follows:

Figure 30. MUX2 implemented with one NOT, two AND, one OR gate(s)

[Digital] Electronics by Example: When Hardware Greets Software

 35

The implementation post-synthesis is done with one LUT, as shown in the

Figure 31. LUT-based implementation of elementary mux, in FPGA

module And2(output q, input a, input b);

 assign q = a & b;

endmodule

module Or2(output q, input a, input b);

 assign q = a | b;

endmodule

module Not1(output q, input a);

 assign q = ~a;

endmodule

module Mux2(output out, input selection, input in0, input in1);

 //assign out = (in0*!selection) | in1*selection;

 //assign out = (selection == 0) ? in0 : in1;

 //structural:

 wire notselection;

 wire w1;

 wire w2;

 Not1 notgate0(.q(notselection), .a(selection));

 And2 andgate1(.q(w1), .a(notselection), .b(in0));

 And2 andgate2(.q(w2), .a(selection), .b(in1));

 Or2 orgate3(.q(out), .a(w1), .b(w2));

Figure 32. Verilog description of an elementary MUX

[Digital] Electronics by Example: When Hardware Greets Software

 36

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Mux2 is

 Port(in0,in1,sel: in STD_LOGIC;

 outp : out STD_LOGIC);

end Mux2;

architecture Mux2a of Mux2 is

 component And2

 port(a,b: in STD_LOGIC;

 q: out STD_LOGIC);

 end component;

 component Or2

 port(a,b: in STD_LOGIC;

 q: out STD_LOGIC);

 end component;

 component Not1

 port(a: in STD_LOGIC;

 q: out STD_LOGIC);

 end component;

 signal w1: STD_LOGIC;

 signal w2: STD_LOGIC;

 signal nsel: STD_LOGIC;

 begin

 andgate1: And2 port map(a => in0, b => nsel, q => w1);

 andgate2: And2 port map(a => in1, b => sel, q => w2);

 notgate3: Not1 port map(a => sel, q => nsel);

 orgate4: Or2 port map(a => w1, b => w2, q => outp);

end Mux2a;

Figure 33. VHDL description of an elementary MUX

[Digital] Electronics by Example: When Hardware Greets Software

 37

Exercise: Using elementary MUX (2-input, 1-selection), describe a 4-input MUX. All data is
1-bit wide.

Solution: A hierarchical implementation will be made, with layered MUXes: first layer will
have 2x MUXes, and the next layer just 1.

Figure 34. Block schematic for MUX4 made of 3x MUX2

As one may see, the number of layers is log2N => depth is O(logN), and the number of
elementary circuits is N-1 => size is O(N).

[Digital] Electronics by Example: When Hardware Greets Software

 38

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Mux4 is

 Port(inp0, inp1, inp2, inp3: in STD_LOGIC;

 sel0,sel1: in STD_LOGIC;

 outpp : out STD_LOGIC);

end Mux4;

architecture Mux4a of Mux4 is

 component Mux2

 port(in0, in1: in STD_LOGIC;

 sel: in STD_LOGIC;

 outp: out STD_LOGIC);

 end component;

 signal wa: STD_LOGIC;

 signal wb: STD_LOGIC;

 begin

 mux2a: Mux2 port map(in0 => inp0, in1 => inp1, sel => sel0, outp => wa);

 mux2b: Mux2 port map(in0 => inp2, in1 => inp3, sel => sel0, outp => wb);

 mux2c: Mux2 port map(in0 => wa, in1 => wb, sel => sel1, outp => outpp);

Figure 35. VHDL description of MUX4 made of MUX2 circuits

Using only elementary …. Describe the circuit in both in Verilog and VHDL language.

[Digital] Electronics by Example: When Hardware Greets Software

 39

[Digital] Electronics by Example: When Hardware Greets Software

 40

3. One-loop systems
Memory unit of 1 bit…

4. Two-loop systems (automata)

4.1 Prerequisites

4.2 Theory

4.3 TODO: other exercises

Famous Chip & Dale squirrels want to go to Beautiful Almond Trees. For this, Chip hired
you to design and implement an electronic map, for Dale, with the following block
schematic:

[Digital] Electronics by Example: When Hardware Greets Software

 41

The map is as follows:

[Digital] Electronics by Example: When Hardware Greets Software

 42

To walk through the maze, the squirrel should go: 3 steps forward, 1 step to the right, 1 step to the left…

ROM1 memory contains data regarding the direction where the squirrel should go:
1 = Forward, 2 = Backwards, 4 = Left, 8 = Right

ROM2 memory contains data regarding how many steps the squirrel go in that direction

Iesirea out a numaratorului, isi schimba valoarea la fiecare FIX 1 secunda (veverita isi poate schimba
directia doar 1 data pe secunda)

Your task is to write Verilog code for the electronic map.
Punctaj (din 50 de puncte): 6 + 7 + 7 + 4 p, 12p pentru top, 10p pentru "design" si 4p coding style.
Numaratorul de timp NUM (6p):
(1p) numaratorul are dimensiunea minima necesara a registrului de stare interna
(1p) numaratorul are dimensiunea minima necesara a registrului de iesire
(1p) registrul de stare interna se incrementeaza in ritmul corespunzator
(1p) registrul de iesire se incrementeaza in ritmul corespunzator (1 secunda)
(1p) conditia de numarare este corecta
(1p) modulul verilog are denumirea ceruta (NUM)
Memoria de tip ROM1 (7p):
(1p) are numarul minim de adrese / locatii, numele cerut al intrarii
(1p) are numarul minim de biti de iesire, numele cerut al iesirii
(1p) conditia de citire e corecta
(Xp) memoria are continutul corect in proportie de X*25%, (X e maxim 4)
Memoria de tip ROM2 (7p)
(1p) are numarul minim de adrese / locatii, numele cerut al intrarii
(1p) are numarul minim de biti de iesire, numele cerut al iesirii
(1p) conditia de citire e corecta
(Xp) memoria are continutul corect in proportie de X*25%, (X e maxim 4)
Transocodorul de tip TRANSCODER (4p)
(1p) in are dimensiunea, tipul corect, numele cerut
(1p) out_sel are dimensiunea si tipul corect, numele cerut
(2p) out_seg are dimensiunea si tipul corect, numele cerut
top (12p):
(1p) memoria ROM1 este instantiata corect (tip, nume semnale)
(1p) memoria ROM2 este instantiata corect (tip, nume semnale)
(1p) numaratorul este instantiat corect (tip, nume semnale)
(1p) transcodorul este instantiat corect (tip, nume semnale)
(1p) legaturile NUM-ROM1 sunt corecte
(1p) legaturile NUM-ROM2 sunt corecte
(1p) legaturile ROM2-TRANSCODER sunt corecte
(1p) top_clk se leaga corect in modulul de top
(1p) ROM1 se leaga corect in exterior
(1p) TRANSCODER se leaga corect in exterior (top: out_sel)
(2p) TRANSCODER se leaga corect in exterior (top: out_seg)
design (10p):
(3p) design-ul este complet (ca numar / tip de componente) si nu are erori de sintaxa / sinteza /
implementare

[Digital] Electronics by Example: When Hardware Greets Software

 43

(3p) design-ul functioneaza pe FPGA asa cum s-a cerut (intre stari trec fix. X milisecunde si starile
se succed in ordinea ceruta)
(1p) corespondenta semnalului de ceas <> pin e corecta
(1p) corespondenta biti de iesire <> pini e corecta (selectie digit)
(2p) corespondenta biti de iesire <> pini e corecta (segmente)
coding_style(4p): codul este usor de citit (indentat si spatiat similar cu exercitiul din laborator5)

Timp de efectiv de lucru: 50 de minute. SUBIECT_5_FARA_RAM
Extraterestrii din sistemul solar luminat de Betelgeuse, au fost de acord sa ne imprumute un
generator ZPM. Drept multumire, oamenii au decis sa tina o serata pentru a le delecta
“ochiurechea” (ochiurechea este un organ de simt al extraterestrilor, care transforma impulsurile
luminoase in semnale electrice interpretate de creierul lor ca “sunete”)
Este minisunea ta, sa reproduci o parte din Simfonia a 9-a pentru ochiurechile extraterestrilor. La
sfarsitul melodiei, se poate introduce o pauza (niciun led aprins) convenabil de lunga apoi se repeta
melodia.
Obs1.
• pentru a produce sunetul A, trebuie aprins LD0
• penrtu a produce sunetul B, trebuie aprins LD0 si LD1
• pentru a produce sunetul C, trebuie aprins LD0, LD1, LD2
• pentru a produce sunetul D, trebuie aprinse LD0, LD1, LD2, LD3
• si tot asa.
Obs2. Durata notelor se considera:
• "2 T" pentru notele care arata ca prima nota E (cea mai din stanga)
• "3 T" pentru nota E cu punct (ultima nota E)
• "1 T" pentru notele care arata ca penultima nota D
• "4 T" pentru notele care arata ca ultima nota D (cea mai din dreapta)
unde 1 T inseamna FIX 1 secunda.
Obs3. Se considera echivalenta o nota de 4 T cu 2 de 2 T sau 4 de 1 T.
Obs4.

[Digital] Electronics by Example: When Hardware Greets Software

 44

Numaratorul NUM-COMP:
• contine doua registre:
◦ unul pentru starea interna (care se incrementeaza la fiecare perioada de ceas)
◦ unul pentru iesire "out_num" (care se incrementeaza cand registrul de stare interna a
numarat o secunda)
• la fiecare incrementare a iesirii, registrul de stare interna se duce in 0
• NUM-COMP numara cand "go" este 1
• NUM-COMP isi mentine valoarea cand "hold" este 1 si "go" este 0
"ROM1" este o memorie de tip ROM de dimensiune corespunzatoare (minima)
"ROM2" este o memorie de tip ROM de dimensiune corespunzatoare (minima)
"MUX" este un multiplexor
Ceasul din sistem este ceasul generat de oscilatorul de 50 MHz de pe placa cu FPGA.
Implementati in Verilog modulele din circuitul din figura, RESPECTAND numele semnalelor si ale
modulelor / instantelor

Timp de efectiv de lucru: 90 de minute. SUBIECT_3_FARA_RAM
"Predator" vrea sa ajute METROREX sa construiasca o linie metrou pana la Aeroportul "Henri
Coanda". In acest scop, vrea sa doneze regiei, un ceas cu timer care la terminarea timpului indicat,
spulbera roca dura din drumul liniei de metrou.
Indicatorul de timp de pe ceas afiseaza initial toate segmentele aprinse; el apoi marcheaza trecerea

[Digital] Electronics by Example: When Hardware Greets Software

 45

timpului prin stingerea a cate unuia din segmente aprinse, la fiecare FIX 500 milisecunde
La momentul T=0: 7 segmente aprinse
La momentul T=1: 6 segmente aprinse
La momentul T=2: 5 segmente aprinse
La momentul T=3: 4 segmente aprinse
La momentul T=4: 3 segmente aprinse
La momentul T=5: 2 segmente aprinse
La momentul T=6: 1 segment aprins
La momentul T=7: 0 segmente aprinse
"num1" este un numarator de tip NUM care numara in sus, din 1 in 1.
"rom1" este o memorie de tip ROM de dimensiune minima.
"dec1" este un decodor care produce mereu un singur bit de 0 pe iesire (arata care 1 digit este
aprins, restul de 3 fiind stinsi)
Ceasul din sistem este ceasul generat de oscilatorul de 50 MHz de pe placa cu FPGA.
Implementati in Verilog modulele din circuitul din figura, RESPECTAND numele semnalelor si ale
modulelor / instantelor

Punctaj (din 50 de puncte): 6 + 9 + 3 + 12p pentru top, 16p pentru "design" si 4p coding style.
Detaliu punctaj:
numarator1 (6p):
(1p) numaratorul are dimensiunea minima necesara
(1p) iesirea numaratorului are dimensiunea corecta

[Digital] Electronics by Example: When Hardware Greets Software

 46

(3p) iesirea numaratorului se schimba exact in ritmul specificat (timp)
(1p) iesirea numaratorului se schimba in maniera necesara (valori)
rom1 (9p):
(1p) conditia de citire a memoriei este corecta
(1p) dimensiunea memoriei e corecta (numar adrese)
(1p) dimensiunea iesirii memoriei e corecta
(1p) continutul memoriei este corespunzator
(1p) intrarile sunt declarate ca intrari
(1p) iesirile sunt declarate ca iesiri
(3p) memoria e implementata corect si complet
dec1 (3p):
(1p) conditia de decodare este corecta
(2p) decodorul e implementata corect si complet
top (12 p):
(2p) memoria rom1 este instantiata corect (denumire, tip, dimensiune)
(2p) numaratorul num1 este instantiat corect (denumire, tip, dimensiune)
(2p) decodorul dec1 este instantiat corect (denumire, tip, dimensiune)
(2p) toate legaturile rom1 sunt corecte (denumire, tip, dimensiune)
(2p) toate legaturile dec1 sunt corecte (denumire, tip, dimensiune)
(2p) toate legaturile din exterior se duc spre blocurile corecte (denumire, tip, dimensiune)
design (16p):
(5p) design-ul este complet (ca numar / tip de componente) si nu are erori de sintaxa
(6p) design-ul functioneaza pe FPGA asa cum s-a cerut (intre stari trec fix. 500 milisecunde si
starile se succed in ordinea ceruta)
(1p) corespondenta semnalului de ceas <> pin e corecta
(2p) corespondenta butoane <> pini e corecta
(2p) corespondenta biti de iesire <> pini e corecta
coding_style(4p)
(4p) codul este usor de citit (indentat si spatiat similar cu exercitiul din laborator5

[Digital] Electronics by Example: When Hardware Greets Software

 47

Figure References
1. Figure 1. A digital signal (as a result of both sampling and quantization processes).

Digital Integrated Circuits
https://wiki.dcae.pub.ro/index.php/Introducere._Verilog_HDL

2. Figure 2. A time-sampled signal (as a result of sampling process). Digital Integrated
Circuits https://wiki.dcae.pub.ro/index.php/Introducere._Verilog_HDL

3. Figure 3. A value-sampled signal (as a result of quantization process). Digital
Integrated Circuits. https://wiki.dcae.pub.ro/index.php/Introducere._Verilog_HDL

4. Figure 4. Analog to digital conversion, digital processing and digital to analog
conversion example. Dornelas, Helga. “Low power SAR analog-to-digital converter
for internet-of-things RF receivers.” (2018).

5. Figure 5. Generic FPGA Architecture Overview. https://www.eetimes.com/all-about-
fpgas/

6. Figure 6. Xilinx CLB. Blue blocks are multiplexers, violet blocks are FFs and dark-
green blocks are LUTs (look-up tables) https://www.eetimes.com/all-about-fpgas/

7. Figure 7. FPGA development flow. https://www.xilinx.com/applications/isolation-
design-flow.html

8. Figure 8. The Nexys 4 DDR FPGA board,
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4-
ddr/nexys4ddr_rm.pdf

9. Figure 9. Nexys 4 DDR board features,
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4-
ddr/nexys4ddr_rm.pdf

10. Figure 10. GPIO devices on the Nexys4 DDR FPGA board.
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4-
ddr/nexys4ddr_rm.pdf

11. Figure 11. NOT gate (“inverter”) made of one pMOS (top) and one nMOS (bottom)
transistor. Why do CMOS NOT gate designs differ from BJT NOT gate designs?
https://electronics.stackexchange.com/questions/570389/why-do-cmos-not-gate-
designs-differ-from-bjt-not-gate-designs

12. Figure 12. ANSI / IEC [5] (right) and MlL-STD-806B [6] (left) symbols foremost
common 7/16 dual-input logic gates (elementary), with their names. Logic Gates.
https://learnabout-electronics.org/Digital/dig21.php

13. Figure 13. The truth tables for the most commonly used logic gates. Nucleic Acid
Computing and its Potential to Transform Silicon0Based Technology.
https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_
and_its_Potential_to_Transform_Silicon-Based_Technology

14. Figure 14. Representing a g(n) function which asymptotically bound f(n) function.
Big-O notation. https://xlinux.nist.gov/dads/HTML/bigOnotation.html

https://wiki.dcae.pub.ro/index.php/Introducere._Verilog_HDL
https://wiki.dcae.pub.ro/index.php/Introducere._Verilog_HDL
https://wiki.dcae.pub.ro/index.php/Introducere._Verilog_HDL
https://www.eetimes.com/all-about-fpgas/
https://www.eetimes.com/all-about-fpgas/
https://www.eetimes.com/all-about-fpgas/
https://www.xilinx.com/applications/isolation-design-flow.html
https://www.xilinx.com/applications/isolation-design-flow.html
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4-ddr/nexys4ddr_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4-ddr/nexys4ddr_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4-ddr/nexys4ddr_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4-ddr/nexys4ddr_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4-ddr/nexys4ddr_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4-ddr/nexys4ddr_rm.pdf
https://electronics.stackexchange.com/questions/570389/why-do-cmos-not-gate-designs-differ-from-bjt-not-gate-designs
https://electronics.stackexchange.com/questions/570389/why-do-cmos-not-gate-designs-differ-from-bjt-not-gate-designs
https://learnabout-electronics.org/Digital/dig21.php
https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_and_its_Potential_to_Transform_Silicon-Based_Technology
https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_and_its_Potential_to_Transform_Silicon-Based_Technology
https://xlinux.nist.gov/dads/HTML/bigOnotation.html

[Digital] Electronics by Example: When Hardware Greets Software

 48

15. Figure 15. The O-notation complexity increases with the number of elements
processed. O(1) and O(logn) are usually excellent complexities, O(n) is fair, and
O(n*logn) is usually considered almost decent in algorithms and circuits. Big-O
Algorithm Complexity Cheat Sheet (Know Thy Complexities!) @ericdrowell.
https://www.bigocheatsheet.com/

16. Figure 17. Verilog syntax cheat sheet (1/2) accessed online on 12.10.2023
https://marceluda.github.io/rp_dummy/EEOF2018/Verilog_Cheat_Sheet.pdf

17. Figure 18. Verilog syntax cheat sheet (2/2) accessed online on 12.10.2023
https://marceluda.github.io/rp_dummy/EEOF2018/Verilog_Cheat_Sheet.pdf

18. Figure 19. VHDL cheat sheet (1/2) accessed online on 08.10.2023:
https://vhdlweb.com/static/vhdl_cheatsheet.pdf, and www.ece.tufts.edu/es/4

19. Figure 20. VHDL cheat sheet (2/2) accessed online on 08.10.2023:
https://vhdlweb.com/static/vhdl_cheatsheet.pdf, and www.ece.tufts.edu/es/4

20. Figure 21. 2-input AND gate
21. Figure 22. Verilog code (dataflow) for a 2-input AND gate
22. Figure 23. Verilog code (dataflow) for a 2-input AND gate
23. Figure 24. 4-input AND gate from 2-input AND gates (dataflow)
24. Figure 25. Verilog description for 4-input AND (dataflow)
25. Figure 27. 4-input AND gate from 2-input AND gates (structural)

https://www.bigocheatsheet.com/
https://vhdlweb.com/static/vhdl_cheatsheet.pdf
http://www.ece.tufts.edu/es/4
https://vhdlweb.com/static/vhdl_cheatsheet.pdf
http://www.ece.tufts.edu/es/4

[Digital] Electronics by Example: When Hardware Greets Software

 49

References
1. C.Bira, “[Digital] Electronics by Example When Hardware Greets Software”, MATRIX ROM,

October 2023, ISBN 978-606-25-0845-6, online available:
https://www.researchgate.net/publication/374388893_Digital_Electronics_by_Example_When
_Hardware_Greets_Software

2. https://www.iso.org/standard/31898.html accessed on 10.08.2023
3. https://www.jedec.org accessed on 10.08.2023
4. Loops & Complexity in DIGITAL SYSTEMS (Lecture notes on Digital Design in Ten Giga-Gate/Chip

Era) by Gheorghe M. Stefan, link:
http://users.dcae.pub.ro/~gstefan/2ndLevelteachingMaterials/0-BOOK.pdf accessed on
25.07.2023

5. "IEEE Standard Graphic Symbols for Logic Functions (Including and incorporating IEEE Std 91a-
1991, Supplement to IEEE Standard Graphic Symbols for Logic Functions)," in IEEE Std 91a-1991
& IEEE Std 91-1984, vol., no., pp.1-160, 13 July 1984, doi: 10.1109/IEEESTD.1984.7896954.

6. MlL-STD-806B, https://bitsavers.org/pdf/mil-std/MIL-STD-
806B_Graphical_Symbols_For_Logic_Diagrams_19620226.pdf accessed on 28.07.2023

7. Abels, Seth & Khisamutdinov, Emil. (2015). Nucleic Acid Computing and its Potential to
Transform Silicon-Based Technology. DNA and RNA Nanotechnology. 2. 10.1515/rnan-2015-
0003.

8. S.Winbers, J.Taylor, Verilog Cheat Sheet,
https://marceluda.github.io/rp_dummy/EEOF2018/Verilog_Cheat_Sheet.pdf accessed on
08.10.2023

9. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction
to Algorithms, Third Edition (3rd. ed.). The MIT Press.

10. C99, ISO/IEC 9899:1999 standard, https://www.iso.org/standard/29237.html accessed on
30.09.2023

https://www.researchgate.net/publication/374388893_Digital_Electronics_by_Example_When_Hardware_Greets_Software
https://www.researchgate.net/publication/374388893_Digital_Electronics_by_Example_When_Hardware_Greets_Software
https://www.iso.org/standard/31898.html%20accessed%20on%2010.08.2023
https://www.jedec.org/
http://users.dcae.pub.ro/~gstefan/2ndLevelteachingMaterials/0-BOOK.pdf%20accessed%20on%2025.07.2023
http://users.dcae.pub.ro/~gstefan/2ndLevelteachingMaterials/0-BOOK.pdf%20accessed%20on%2025.07.2023
https://bitsavers.org/pdf/mil-std/MIL-STD-806B_Graphical_Symbols_For_Logic_Diagrams_19620226.pdf%20accessed%20on%2028.07.2023
https://bitsavers.org/pdf/mil-std/MIL-STD-806B_Graphical_Symbols_For_Logic_Diagrams_19620226.pdf%20accessed%20on%2028.07.2023
https://marceluda.github.io/rp_dummy/EEOF2018/Verilog_Cheat_Sheet.pdf%20accessed%20on%2008.10.2023
https://marceluda.github.io/rp_dummy/EEOF2018/Verilog_Cheat_Sheet.pdf%20accessed%20on%2008.10.2023
https://www.iso.org/standard/29237.html%20accessed%20on%2030.07.2023

[Digital] Electronics by Example: When Hardware Greets Software

 50

Călin Bîră, PhD., is Associate Professor at the Politehnica University of
Bucharest, where he teaches undergraduate and graduate courses related
to programming, microcontrollers, digital design, signal acquisition and
processing. He obtained his PhD in 2013 from the Politehnica University of
Bucharest, with a thesis on programming environment for (energy-efficient
embedded) accelerators, thus gradually shifting to an academic career. His
work with the Faculty of Electronics, Telecommunications and Information

Technology aims to bridge academia (research and teaching) with business and industry
and their ways of designing research and development projects, thus addressing the gap
between university and businesses. Călin Bîră’s commitment to academic research and
strengthening international collaboration and teamwork is made visible by multiple research
grants and projects (DocInvest, SAVE, DEXTER, ATLAS) as well as by publications in the
domain of electronics, programming and signal processing. Prior to his pursuing an
academic career, Călin Bîră worked for 8 years as an engineer for global companies,
specializing in low-level software and hardware design. His current interests include energy-
efficient computation and embedded systems for research and commercial projects.

