
Lecture 3 slides 

To understand recursion, you must first understand recursion. 



C Language Review - Memory 

• The memory is a very large array of 

bytes 

• It is made up of cells, or locations of 

one byte each (the memory is byte-

addressed) 

• Each location has an address 

• The number of addresses depends 

on the size of the memory 

0x21 0xBF 0x00 0x01 0x23 … 0xDE 0xAD 0xBE 0xEF 

Address 0 

Address 1 

Address 0xFFFFFFFF… 



C Language Review - Pointers 
• Pointers are variables that don’t hold 

values, but addresses; 

• The operator used to obtain the address 

of a variable is “&”; 

• The operator used to read the data from 

an address is “*”; NOTE: This is different 

from the operator used to define a 

pointer; 

char * c; 

c = (char*)16; 

char d = *c; 

// d = ? 

0 1 2 3 4 5 6 7 8 9 

0x21 0xBF 0x00 0x01 0x23 … 0xDE 0xAD 0xBE 0xEF 

10 11 12 13 14 15 16 17 18 19 

0x10 0x83 0x11 0xA9 0x50 0x1F 0xFF 0x4D 0xCC 0x1A 

20 21 22 23 24 25 26 27 28 29 

30 31 32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 48 49 



C Language Review – Pointers (cont’d) 

• If a pointer is declared for a data 

type larger than one byte, 

subsequent bytes are considered to 

belong to the same variable 

• Little endian convention: least 

significant byte goes first! 

int *pInt = (int*)6; 

int myInt = *pInt; 

// myInt == ? 

 

0 1 2 3 4 5 6 7 8 9 

0x21 0xBF 0x00 0x01 0x23 … 0xEF 0xBE 0xAD 0xDE 

10 11 12 13 14 15 16 17 18 19 

0x10 0x83 0x11 0xA9 0x50 0x1F 0xFF 0x4D 0xCC 0x1A 

20 21 22 23 24 25 26 27 28 29 

30 31 32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 48 49 



Pointer arithmetic: adding a constant integer to a pointer will actually 
increment the address with that value multiplied with the size of the data 
type, in bytes. 

 

short  *pShort = (short*)10; 
pShort++; 
printf(“%d”, (long)pShort); //will get 12 

 

float *pFloat = (float*)16; 
pFloat++; 
printf(“%d”, (long)pFloat); //will get 20 

 

Using the “[]” operator is always equivalent with using pointer arithmetic: 
int *pInt = (int*)20; 
// pInt[5] === *(pInt + 5) 

C Language Review – Pointers (cont’d) 



C Language Review – Pointers (cont’d) 

Practice: 

*((short*)4 + 2) 

*((char*)((int*)((char*)10 – 2) – 1)) 

*((char*)(*((char*)((int*)0 + 1) - 1))) 

0 1 2 3 4 5 6 7 8 9 

0x21 0xBF 0x00 0x01 0x23 … 0xEF 0xBE 0xAD 0xDE 

10 11 12 13 14 15 16 17 18 19 

0x10 0x83 0x11 0xA9 0x50 0x1F 0xFF 0x4D 0xCC 0x1A 

20 21 22 23 24 25 26 27 28 29 

30 31 32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 48 49 



• An algorithm is  series of steps required to be 
performed in order to achieve a goal. 

• A software or computer algorithm is a series of 
operations performed in order to process a set of input 
data and obtain a required set of output data. 

• In most cases, there is more than one way to solve a 
problem => there is more than one possible algorithm. 

• The quality of an algorithm depends on how fast it runs 
on a set of input data, how well it scales with the 
increase of the size of the input data, and how many 
computer resources it uses during runtime. 

Algorithms and Complexity 



• The Big O notation is used to represent the way an algorithm scales with 
the increase of input data; E.g.: a search algorithm in an random content 
array is always O(n), meaning that the algorithm scales linearly with the 
number of elements in the array. 

• You can think of n as the number of operations required to solve the 
problem. 

 

Examples: 

 

Algorithms and Complexity – Big O Notation 

O(n) complexity O(n2) complexity O(√n) complexity 

for(i=0; i<n; i++){ 
    sum += v[i]; 
} 

for(i=0; i<n; i++){ 
        for(j=0; j<n; j++){ 
            sum += v[i][j]; 
        } 
} 

 

int isPrime(int n){ 
    int i; 
    if(n == 1) return 0; 
    for(i=2; i<=sqrt(n); i++){ 
        if(n % i == 0) return 0;  
    } 
    return 1; 
} 



In theory, the constant before the n value in big O notation doesn’t matter: 
O(kn) = O(n) 

In practice, it matters, and sometimes it matters a lot; There are theoretical 
algorithms that are of lower complexity, but because they have such a large 
constant in front of the n, they require huge values for n in order to be 
efficient. 

 

Example: Which is faster? O(10n) or O(n2)?  

For n = 2? 
How about n = 3? 
How about n = 10? 
And how about n = 12?  

Algorithms and Complexity – Big O 
Notation (cont’d) 



• Just like in math, recursion is the definition of  a function through itself; 

• Just like in math, a stop condition is a mandatory requirement, or the 
stack will overflow (remember lecture 2). 

 

Recursion 

Formal definition C definition 

𝑓: 𝑁∗ → 𝑁∗ 
𝑓 𝑥 = 𝑓 𝑥 − 1 + 1 
𝑓 1 = 1 

unsigned f(unsigned n){ 
    if(n == 1) return 1; 
    return f(n-1) + 1; 
} 



1. Compute the factorial of a number 

unsigned long long factorial(int n){ 
    if(n == 1) return 1; 
    return factorial(n – 1) * n; 
} 

 

1. Find the maximum in an array 

int max(int* v, int start, int stop){ 
    if(start == stop) return v[start]; 
    int maxFirstHalf = max(v, start, (start + stop) / 2); 
    int maxSecondHalf = max(v, (start + stop) / 2 + 1, stop); 
    return maxFirstHalf > maxSecondHalf ? maxFirstHalf : maxSecondHalf; 
} 

Recursion - Example 



• Divide et Impera (divide and conquer in 
Latin), is a programming technique that 
tries to solve a problem by splitting it into 
smaller problems of the same type. 

• Most recursive functions are particular 
divide-et-impera implementation. 

• Example of divide-et-impera algorithm, 
Tower of Hanoi: 

Having three rods and a number of discs placed 
in ascending order on the first rod (like the 
image on the right), the objective is to move all 
discs to the third rod, obeying three simple rules: 

1. Only one disk can be moved at a time. 

2. Each move consists of taking the upper disk 
from one of the stacks and placing it on top of 
another stack i.e. a disk can only be moved if it 
is the uppermost disk on a stack. 

3. No disk may be placed on top of a smaller disk. 

 

 

Recursion –Divide et Impera 



Thank you! 

* For next lecture, required notions are: arrays and for statements 


