Stabilizatoare de tensiune

1. Introducere teoretica

Stabilizatorul de tensiune este un circuit electronic care, ideal, asigura la iesire o tensiune constanta, si care nu depinde de alti parametrii ca: tensiune de intrare, temperatura ambianta, curent de sarcina. În realitate tensiunea de iesire e dependenta de acesti parametri, dar variatia ei poate fi controlata si minimizata printr-o proiectare atenta.

Cele 2 marimi de interes ce caracterizeaza un stabilizator sunt tensiunea de iesire V_o (se doreste a fi o constanta) si rezistenta de iesire R_o (se doreste a fi cât mai mica).

Marimile fizice ce definesc independenta stabilizatorului de influentele mediului extern sunt:

- tensiunea minima de alimentare la intrarea stabilizatorului V_{imin}
- curentul maxim de iesire I_{omax}
- factorul de stabilizare $S = \frac{\Delta V_i}{\Delta V_o} \bigg|_{R_I = dat}$

deriva termica a tensiunii de iesire.

Circuitele pe care le vom studia în aceasta lucrare vor folosi stabilizatorul liniar integrat LM723 (BA723) a carui schema bloc e data mai jos:

Figura 1. Structura interna a circuitului integrat LM723

Se va face simularea la 2 tensiuni diferite de iesire: $V_o < V_{REF}$, respectiv $V_o > V_{REF}$. Pentru primul caz ($V_o < V_{REF}$)schema echivalenta simplificata e data în figura 2. Tensiunea de iesire este (considerînd amplificatorul de eroare AE ideal):

$$V_O = \frac{R_2}{R_1 + R_2} \cdot V_R$$

Amplificatorul este în aceasta situatie un simplu repetor a unei fractiuni din tensiunea de referinta.

Figura 2. Configuratia de stabilizator cu V_o<V_{REF}

Pentru a doua situatie ($V_o > V_{REF}$), schema electrica simplificata arata ca în figura de mai jos:

Figura 3. Configuratia de stabilizator cu V₀>V_{REF}

Tensiunea de iesire este în aceasta situatie:

$$V_O = \frac{R_1 + R_2}{R_2} \cdot V_R$$

Schema electrica a stablilizatorului liniar de tensiune cu $V_0 < V_R$ este data în figura 4:

Figura 4. Schema electrica a stabilizatorului liniar de tensiune cu $V_0 < V_R$

Se realizeaza schema electrica folosind editorul "Schematics" din pachetul de programe "Pspice Student 9.1" oferit gratuit de firma Cadence. Pentru alegerea componentelor se foloseste comanda "Draw – Get New Part..." (CTRL+ G). Pentru rotirea componentelor se foloseste comanda "Edit- Rotate" (CTRL+R). Pentru asezarea în oglinda se acceseaza comanda "Edit- Flip" (CTRL+F).

Figura 5. Schema electrica a stabilizatorului liniar de tensiune cu V₀>V_R

Dupa pozitionarea convenabila a pieselor pe schema se fac legaturile dintre ele folosind creionul " Draw- Wire" (CTRL+W) cu ajutorul mousului. Componentele folosite sunt trecute în tabelul 1.

Denumire	Componenta	Valoare	Librarie	
V _{in}	VPWL	T1=0; V1=0; T2=1; V2=1; T3=10; V3=20	Source.slb	
Rx (x=1n)	R	 pentru ohmi doar valoarea numerica 	Analog.slb	
		 pentru kohmi se trece simbolul k dupa valoarea numerica 		
Cx (x=1n)	С	 pentru capacitati de ordinul picofarazilor se trece litera p dupa valoarea numerica 	Analog.slb	
		 pentru capacitati de ordinul nanofarazilor se trece litera n dupa valoarea numerica 		
		 pentru capacitati de ordinul microfarazilor se trece litera u dupa valoarea numerica 		
U1	LM723	Circuit integrat stabilizator liniar de tensiune	Stab.slb	
R _s	R_var	Rezistenta variabila	Analog.slb	
Q1	BD135_137_139	Tranzistor bipolar NPN de medie putere	Stab.slb	
Masa	GND_ANALOG	0	Port.slb	

Dupa ce s-a desenat schema electrica si s-a salvat cu comanda CTRL+S se trece la simularea circuitului cu ajutorul programului Pspice. Se selecteaza meniul "Analysis-Setup..." si se face simulare în domeniul timp prin selectarea butonului "Transient..." pe o durata de 20s ("Final time=20s").

Figura 6. Selectarea simularii în domeniul timp

Pentru reprezentarea caracteristicii $V_o(V_{in})$ trebuie schimbata marimea timp de pe axa Ox cu marimea V_{in} . În meniul Pspice A/D se acceseaza "Plot-Axis Settings" si se alege "Axis Variable..." ca V1(Vin).

Figura 7. Selectarea tensiunii Vin pe axa X

Pentru reprezentarea tensiunii de iesire în functie de tensiunea de intrare vom utiliza comanda "Trace-Add Trace" (INSERT) si vom alege marimea pe axa Y V2(Rs).

Figura 8. Selectarea tensiunii de iesire pe axa Y

Dupa selectia marimilor de simulat ne vom deplasa cu ajutorul cursorului ("Trace-Cursor-Display") (Toggle Cursor) citind $V_0(V_{in})$.

Figura 9. Determinarea valorilor V_o(V_{in})

2. Desfasurarea lucrarii

1. Se deseneaza schema electrica a stabilizatorului liniar de tensiune cu $V_0 < V_R$ (Fig. 4).

A. Se alege sarcina $R_s=51?$.

B. Se face simularea în domeniul timp si se alege reprezentarea grafica în PSpice $V_o(V_{in})$ alegînd marimea V_{in} pe axa X. Se determina tensiunea V_{in} minima de la care tensiunea de iesire V_o este constanta. (tensiunea minima de alimentare de la care stabilizatorul functioneaza corect).

2.Se deseneaza schema de mai jos alegînd V_s de tip VPWL cu T1=0, V1=0, T2=10, V2=4.8. Simularea se face în domeniul timp, pe o durata de 20s.

Figura 10. Determinarea tensiunii de iesire V₀ în functie de curentul de iesire I₀ (I(R_{s1}))

Dupa ce se ruleaza simularea cu F11 se alege pentru reprezentare marimea I(Rs1) pe axa X : "Plot-Axis Settings...-X Axis-Axis Variable...- I(Rs1)". Tensiunea de iesire se reprezinta folosind comanda "Trace-Add Trace- V(U1:3)-OK" asa cum se observa în figura 11. Se vor determina:

- A. Valoarea maxima a curentului I_o pentru care tensiune de iesire V_o nu se schimba (I_{omax})
- B. Puterea disipata de tranzistorul Q1 pentru $I_o=I_{omax}$ si pentru $V_s=0$ (Rs=10?).
- C. Care este cel mai defavorabil regim de functionare pentru tranzistorul Q1?

3. Se deseneaza schema electrica a stabilizatorului liniar de tensiune cu $V_0 > V_R$ si protectie la scurtcircuit prin întoarcerea curentului (figura 5).

- A. Se alege rezistenta de sarcina $R_S=51$?.
- B. Se face simularea V_o (V_{in}) si se determina valoarea minima a tensiunii de intrare V_{imin} pentru care tensiunea de iesire V_o ramîne constanta. Aceasta valoare este tensiunea minima necesara la intrare pentru ca stabilizatorul sa functioneze corect. Se compara aceasta valoare cu valoare determinata experimental la laboratorul de masuratori.

Figura 11. Reprezentarea grafica V₀-I₀

4. Se modifica schema din figura 5 prin înlocuirea sursei de alimentare V_{in} (variabila) cu o sursa fixa de tensiune Vcc (VDC) cu o valoare de 20V. Se înlocuie sarcina cu o rezistenta variabila R_var (denumita Rs1) (figura 12). Prin modificarea parametrului SET se pozitioneaza cursorul potentiometrului R_var, modificîndu-i valoarea si implicit consumul absorbit de sarcina. Relatia dintre pozitia cursorului SET si valoarea rezistentei e data de:

$$\frac{SET}{R \quad \text{var} \quad \max im} = R _ \text{var}$$

unde R_var_maxim are valoarea de 201? . Se va determina si pozitiona cursorul SET pentru fiecare valoare a lui R_var din tabel. Se ruleaza simularea cu F11 alegînd "Bias point detail" si se va selecta "Enable Bias Voltage Display" (" Analysis-Display results on schematic- Enable voltage display") pentru afisarea tensiunilor continue în nodurile schemei.

Tabelul 2									
R_var(?)	201	153	76.5	51	42.5	31	25.5	10.2	0
V _o (V)									
$I_o(mA) = V_o/R_var$									
$V_{E1}(V)$									
V _{CE1}									

Figura 12. Schema electrica pentru determinarea caracteristicii $V_0(I_0)$ cu R_var si $V_0 > V_R$ Tensiunea V_{E1} este tensiunea masurata în emitorul tranzistorului Q1 (V(Q1:e)) iar tensiunea V_{CE1} e tensiunea colector-emitor a tranzistorului Q1 (V(Q1:c) - V(Q1:e)). 5. Se modifica sarcina stabilizatorului prin introducerea unei rezistente fixe înseriata cu o sursa de tensiune variabila în timp VPWL.

Figura 13. Determinarea caracteristicii V₀(I₀) pentru stabilizatorul liniar cu V₀>V_R

Sursa de tensiune Vs (de tip VPWL) are urmatorii parametri: T1=10, V1=0; T2=10, V2=12. Se ruleaza simularea în domeniul timp pe o durata de 20s.

Figura 14. Alegerea simularii în domeniul timp pentru V_o>V_R

Dupa rularea simularii cu F11 în Pspice se alege pentru reprezentarea grafica pe axa X curentul de iesire I_0 : "Plot-Axis Settings- X axis- Axis Variable... I(Rs)":

Figura 15. Reprezentarea pe axa X a curentului de iesire

Se alege reprezentarea tensiunii de iesire V_o (V(U1:3)) pe axa Y:

Figura 17. Citirea valorilor pe grafic

Se vor determina:

- A. Valoarea maxima a curentului cu care poate fi încarcat stabilizatorul Iomax
- B. Curentul de scurtcircuit ($I_o|_{R_s \to 0}$) (în cazul nostru $R_s = 10$?).

C. Puterea maxima disipata de tranzistorul regulator serie Q1 ($I_0=I_{omax}$) si la scurtcircuit ($I_o|_{R_c \to 0}$).

6. Se determina rezistenta de iesire $R_o = \frac{dV_o}{dI_o}$ si factorul de stabilizare $S = \frac{dV_i}{dV_o}$.

A. Pentru determinarea factorului de stabilizare S alimentare se foloseste o tensiune continua V_{in} (VDC) de 20V, peste care se suprapune o tensiune alternativa V_S (VSIN) cu amplitudinea de 1V. Sarcina stabilizatorului va fi un generator ideal de curent I_o (IDC)=20mA. În paralel cu sursa de curent se conecteaza o rezistenta de 10M? (sursa reala de curent are o rezistenta interna). Temperatura va fi mentinuta constanta (27^0 C). Sursele folosite (tensiune, current) sunt trecute în tabelul 3. Simularea se va face în domeniul timp. Se determina pe grafic amplitudinea vîrf la vîrf a tensiunii de intrare V(Q1:c) respectiv amplitudinea vîrf la vîrf a tensiunii de istre S va fi raportul acestor 2 marimi.

Figura 18. Schema pentru determinarea factorului de stabilizare S

Tabelul 3			
Denumire	Componenta	Valoare	Librarie
	VSIN	VOFF=0,	
Vs		VAMPL=1,	Source.slb
		FREQ=50	
Io, Iodc	IDC	20mA	Source.slb
	ISIN	IOFF=0,	
Ioac		IAMPL=4mA,	Source.slb
		FREQ=50	

B. Se realizeaza schema din figura 19 pentru determinarea rezistentei de iesire:

Figura 19. Schema pentru determinarea rezistentei de iesire

Rezistenta Rs modeleaza rezistenta de contact, iar rezistenta R_i modeleaza rezistenta interna a surselor de curent. Rezistenta de iesire se determina împartind amplitudinea vîrf-vîrf a tensiunii de iesire V(U1:3) la valoarea amplitudinii vîrf-vîrf a curentului prin Rs: I(Rs).

Anexa 1

Instructiuni de instalare a librariilor Spice pentru simularea stabilizatorului liniar de tensiune cu LM723 (ßA723).

- 1. Se copiaza fisierele "stab.lib" si "stab.slb" în directorul în care se afla librariile Pspice. Spre exemplu, daca programul a fost instalat cu setarile din fabrica (default settings), calea este: "C:\Program Files\ OrCAD_Demo\PSpice\Library"
- 2. În editorul Schematics se adauga caile de acces catre librarii:
- A. Analysis-Library and include files...-Browse...- C:\ Program Files\OrCAD_Demo\ PSpice\Library \stab.lib Open- Add Library*-OK
- B. Options-Editor Configuration-Library Settings...-Browse...- C:\ Program Files\OrCAD_Demo\ PSpice\Library \stab.slb- Open-Add*-OK-OK

Note:

- 1. Fisierele spice corespunzatoare circuitului integrat LM723 si tranzistorului bipolar se pot descarca de la adresa <u>http://arh.pub.ro/lab/cef/index.html</u>
- 2. Pentru a stabili o legatura de comunicare(studiem stabilizatorul) între cel care spune povestea si cei care o asculta, sunteti rugati sa trimiteti propunerile voastre de îmbunatatire a lucrarii la adresa <u>lauru teo@yahoo.co.uk</u> sau pe forum: <u>http://arh.pub.ro/forum/viewforum.php?f=7</u>

As. ing. Laurentiu Teodorescu