ELECTRONIC DEVICES AND CIRCUITS IV

module MCM6/EV

Volume $1 / 2$
 THEORY AND EXPERIMENTS

TEACHER / STUDENT manual

CONTENTS

Lesson B33: RC and WIEN BRIDGE OSCILLATORS page 1
Lesson B34: COLPITTS OSCILLATOR page 9
Lesson B35: HARTLEY and MEISSNER OSCILLATORS page 15
Lesson B36: QUARTZ OSCILLATORS page 23
Lesson B37: ASTABLE MULTIVIBRATOR page 29
Lesson B38: MONOSTABLE MULTIVIBRATOR page 36
Lesson B39: BISTABLE MULTIVIBRATOR page 43
Lesson B40: SCHMITT TRIGGER page 49
APPENDIX A: DATA SHEETS

Keep this handbook at hand for any further help.
After the packaging has been removed, set all accessories in order so that they are not lost and check the equipment integrity. In particular, check that it shows no visible damage.

Before connecting the equipment to the $+/-12 \mathrm{~V}$ power supply, be sure that the rating corresponds to the one of the power mains.

This equipment must be employed only for the use it has been conceived, i.e. as educational equipment, and must be used under the direct supervision of expert personnel.

Any other use is not proper and therefore dangerous. The manufacturer cannot be held responsible for eventual damages due to inappropriate, wrong or unreasonable use.

LESSON B33: RC and WIEN BRIDGE OSCILLATORS

OBJECTIVES

- To understand and use an RC oscillator circuit
- To understand and use a Wien bridge transistor oscillator

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod. PSI-PSU/EV, module holder structure mod. MU/EV), Individual Control Unit mod.SIS1/SIS2/SIS3 (this module can operate autonomously, faults are inserted through dip-swicthes available in in the module. When external control units are used, these four dip-swicthes will be set to OFF, that is downwards)
- experiment module mod.MCM6/EV
- oscilloscope

B33.1 BASIC THEORY

An oscillator is a circuit which can generate an alternating (ac) signal from a dc power supply source.
Generally an oscillator has four main requirements:

- a dc power supply
- an amplification circuit
- a network which determines the frequency of oscillation
- positive (also called "regenerative") feedback.

An oscillator can be thought of as an amplifier which supplies its own input signal. To produce oscillations the signal fed back must have the correct phase.
The frequency of oscillation is determined by:

- a passive R-C network (for low frequencies)
- a passive L-C network or a quartz crystal (for high frequencies)

Phase shift or RC oscillator

Figure B33.1 shows the typical circuit of a phase shift oscillator.
It basically consists of a common emitter amplifier, whose output is taken from the collector to the input or base by an RC network which shifts the signal by 180°. The input signal will then allow selfoscillation of the circuit.

fig. B33.1
The oscillation depends on the ratio R / Rc and on hfe. In addition the following condition must be met:
hfe ≥ 44.5

The frequency of oscillation is:

$$
\begin{equation*}
f_{o}=\frac{1}{2 \pi R C} \cdot \frac{1}{\sqrt{\left[6+4 \cdot\left(R_{c} / R\right)\right]}} \tag{Hz}
\end{equation*}
$$

Another configuration of phase shift oscillator is shown in figure B33.2, where the lay-out of the capacitors and the resistors is now reversed. In this case the frequency of oscillation for this circuit is :
$\mathrm{f}_{0}=\sqrt{6 /(2 \pi \cdot \mathrm{R} \cdot \mathrm{C})}$

fig. B33.2
The RC oscillator is used to generate frequencies ranging from a few Hz to many hundreds of kHz . It is not so efficient for frequencies in the order of MHz , for which LC oscillators are used. To obtain variation of the oscillation frequency over a large range, the three capacitors (or the three resistors) must be varied simultaneously. In this way, the impedance of the shift network is kept constant and so consequently, is the amplitude of the oscillations. The amplifiers used for these oscillators usually operate in class A, in order to minimize signal distortion.

Wien bridge oscillators also use the principle of positive feedback. The circuit of figure B33.3 represents the basic circuit diagram of this type of oscillator. In this circuit, non inverting amplifiers are used.

Fig. B33.3

The circuit consists of two potential dividers:

- the first is a series RC and a parallel RC network. This provides the positive feedback
- the second consists of R4 and R3 and is purely resistive. This provides negative feedback.

Generally we have $\mathrm{RI}=\mathrm{R} 2=\mathrm{R}$ and $\mathrm{Cl}=\mathrm{C} 2=\mathrm{C}$. In this case the circuit can oscillate if the following condition is satisfied:
$\frac{\mathrm{R}_{3}}{\mathrm{R}_{3}+\mathrm{R}_{4}}=\frac{1}{3}-\frac{1}{\mathrm{~A}_{\mathrm{d}}}$
From this it can be seen that the gain Ad of the amplifier cannot be less than 3. Otherwise the resistances would be negative, which is physically impossible. If as is usual, the gain of the amplifier is very high, the oscillation condition simply becomes:
$\mathrm{R}_{3} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \approx 1 / 3$
And the frequency of oscillation is then simply: $f_{0}=1 /(2 \pi \cdot R \cdot C)$.

B33.2 EXERCISES

\rightarrow MCM6	Disconnect all jumpers
SIS1	Turn all switches $O F F$
SIS2	Insert lesson code: $B 33$

RC oscillator

- Insert jumpers J1, J2, J5 to produce the circuit shown in fig.B33.4.

fig. B33.4
- Adjust RV3 to its half way position.
- Adjust RV1 to obtain approximately 6 Vdc voltage at the collector of T1.
- Slowly adjust the resistance value of trimmer RV3 until a perfect sine wave is displayed on the oscilloscope from the collector of T1.
- Check that RV3 enables the signal distortion to be adjusted, and also that it can stop oscillations by changing the circuit amplification.

The trimmer RV3 is decoupled from the emitter resistance by means of the capacitor C5, which blocks dc. In this way, by adjusting RV3, the dynamic gain of the circuit can be adjusted, and consequently the conditions necessary for oscillation can be satisfied.

- Vary RV1 and observe that this allows the amplitude of the oscillations to be adjusted.
- Measure the frequency $f o$ of the signal.

Q1 What is the approximate frequency of oscillation?
SET
A B
$16 \quad 1 \mathrm{~Hz}$
$23 \quad 1 \mathrm{kHz}$
$35 \quad 1 \mathrm{MHz}$
42100 Hz
$51 \quad 50 \mathrm{kHz}$
64500 Hz

- Display the signals at the base and collector of Tl .

Q2 What is the phase shift, approximately, between these two signals?

SET		
A	B	
1	5	0°
2	6	90°
3	1	10°
4	3	180°
5	2	120°
6	4	150°

- Examine the sine wave across the resistors R1, R2, R3 and note the progressive shift in phase of the signal.

SIS1	Turn switch S10 ON
SIS2	Press INS

- if necessary, adjust RV3 to make the circuit oscillate again

Q3 Examine the wave forms. How has the circuit changed?

SET

$A B$
15 the transistor has been short-circuited between its base and collector
21 a resistor has been inserted in parallel to R3
32 the power supply voltage has been changed
43 the feedback line has been disconnected
54 the amplification of the circuit has been changed

- Remove jumpers J 2 , J 5 , insert J3, J4 to produce the circuit of figure B33.5.

fig. B33.5
- Connect the oscilloscope to Tl collector.
- Vary RV1 and RV2 to make the circuit oscillate.
- Note the effect of RV2, the collector resistance, on the oscillator operation.

Wien bridge oscillator

- Remove all jumpers, insert J6, J9 to produce the circuit of fig.B33.6.

fig. B33.6
- display the signal present on the collector of T2
- adjust RV4 to obtain a sine wave, and measure its frequency
- compare the theoretical frequency with the measured frequency ($\mathrm{R}=\mathrm{R} 6=\mathrm{R} 7=10 \mathrm{~K} \Omega, \mathrm{C}=\mathrm{C} 6=\mathrm{C} 9=0.1 \mu \mathrm{~F}$)
- change capacitors C 6 and C 9 for the 10 nF capacitors C 8 and C 11 , by disconnecting jumpers J6 and J9 and connecting J8 and J11
- adjust RV4 to obtain oscillation, and measure the new frequency of oscillation
- change capacitors C 8 and C 11 for the $1 \mu \mathrm{~F}$ capacitors C 7 and C 10 , by disconnecting jumpers J 8 and J 11 and connecting J 7 and J10
- adjust RV4 and measure the new frequency of oscillation

Q4 How is the measured frequency affected by capacitance?
SET
$A B$
13 it is independent of the capacitance value
21 it decreases with capacitance value
32 it increases with capacitance value

- remove jumper J9

SIS1	Turn switch S9 ON
SIS2	Press INS

Q5 From the measurement of the new frequency of oscillation, and in relation to the previous measurements, what is the capacitance value in the parallel circuit?

SET

$A B$
$14 \quad 1 \quad \mu \mathrm{~F}$
$26 \quad 2 \mathrm{nF}$
$31 \quad 10 \mu \mathrm{~F}$
4510 nF
$53 \quad 100 \mathrm{nF}$
6247 nF

OSIS1 Turn switch S9 OFF

- Insert J9, connect the oscilloscope channel 1 at the T2 base and channel 2 to T2 collector and than to T3 collector in turn.
- Observe the phase and amplitudes of the signals.
- From these observations, the need to use at least 2 stages to produce oscillations with BJTs can be seen.

As the stability of a Wien bridge oscillator depends on the amplification level of the circuit, it is necessary for the first common emitter stage to have a high gain. However this amplifier inverts the signal: so a second common emitter stage must be used, to obtain a further shift of 180°. It also gives some extra amplification.

B33.3 SUMMARY QUESTIONS

Q6 To produce an oscillator with an inverting amplifier, the phase shift provided between the output and input must be:

SET
$A B$
130 degrees
2190 degrees
$35 \quad 180$ degrees
42270 degrees
54120 degrees
Q7 To obtain a 180° shift in a RC oscillator, the minimum number of stages needed is:

SET

$A B$
131
212
353
424
545

Q8 Calculate the frequency of the $R C$ oscillator in fig.B33.1, with $R=33$ Kohm, $C=22 \mathrm{nF}, \mathrm{Rc}=10 \mathrm{Kohm}$:

```
SET
A B
1 3 fo = 513 Hz
2 2 fo = 81 Hz
3 5 fo = 89.5 Hz
4 1 fo = 51 Hz
5 6 fo = 2 kHz
64 fo = 8 kHz
```

Q9 Calculate the frequency of the Wien bridge oscillator, with $R=33$ Kohm, $C=22 \mathrm{nF}$:

```
SET
A B
1 6 fo = 513 Hz
2 1 fo = 1377 Hz
3 4 fo = 219 Hz
4 5 fo = 1200 Hz
5 3 fo = 100 kHz
6 2 fo = 22 MHz
```


LESSON B34: COLPITTS OSCILLATOR

OBJECTIVES

To understand and use a Colpitts oscillator, made with a BJT circuit:

- the dependence of the frequency on the inductance and capacitance values
- measurement of the frequency for different capacitance values
- effect of power supply voltage on the frequency of oscillation

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PSI-PSU/EV, module holder structure mod.MU/EV), Individual control unit mod. SIS1/SIS2/SIS3
- experiment module mod.MCM6/EV
- oscilloscope and frequency meter

B34.1 BASIC THEORY

The Colpitts oscillator is a sine wave oscillator which uses an LC feedback circuit. Figure B34.1 shows the general principles. The circuit comprises an amplifier and a π-feedback network, consisting of one inductor and two capacitors.

fig. B34.1
Provided that the amplifier has a high input resistance, the circuit of figure B34.1 can be represented by the equivalent circuit of figure B34.2, where A is the amplification of the system.

If the resistor Rs of the inductance L is neglected, the conditions for oscillation of the circuit are:
$\mathrm{A} \cdot \mathrm{C}_{1} / \mathrm{C}_{2}=1$
$\mathrm{w}_{\mathrm{o}} \cdot \mathrm{L}-\mathrm{C}_{1} \cdot 1 / \omega_{\mathrm{o}}-\mathrm{C}_{2} \cdot 1 / \omega_{0}=0$

fig.B34.2

From this, the frequency of oscillation $f o$ is:
$\mathrm{f}_{\mathrm{o}}=\frac{1}{2 \pi} \cdot \sqrt{\frac{\mathrm{C}_{1}+\mathrm{C}_{2}}{\mathrm{~L} \cdot \mathrm{C}_{1} \cdot \mathrm{C}_{2}}}$

If $\mathrm{Cl}=\mathrm{C} 2=\mathrm{C}$, the frequency of oscillation is inversely proportional to the square root of the product LC :

$$
\begin{equation*}
\mathrm{f}_{0}=\frac{1}{\pi \sqrt{(2 \cdot \mathrm{~L} \cdot \mathrm{C})}} \tag{Hz}
\end{equation*}
$$

The Colpitts oscillator, as all LC oscillators, is used at high frequencies

Practical considerations (from tens of kHz to hundreds of MHz). If the active device of the amplifier is a BJT (figure B34.3) the previous equations are not strictly true. The transistor does not, in fact, have a high input resistance and besides, can present parasitic capacitances across its terminals. These must be considered in the calculation of C 1 and C 2 in the circuit.

Fig. B34.3

B34.2 EXERCISES

OCM6	Disconnect all jumpers Set in OFF all S switches
$\boldsymbol{\text { SISI }}$	Turn all switches OFF
SIS2	Insert lesson code: B34

Frequency dependence on L and C

- Set + Vcc adjustable power supply to 12 V .
- Insert jumpers J13, J14, J16, J20, J21, J22, J24, J28 to produce the circuit of figure B34.4.

Fig. B34.4

- Display the AC output signal present at terminal 2.
- adjust RV5 to obtain a sine wave
- measure the signal frequency
- rotate the core of the coil (L1+L2) and note the variation of signal frequency
- change the last circuit, removing jumper J14 and connecting J15, so that the capacitor C12 is changed with C13.
- if necessary, adjust RV5 to obtain oscillation
- measure the new frequency of oscillation

Q1 From measurements on the circuit, what is the result ?

SET
A B
14 the frequency of oscillation of the circuit increases as capacitance of the feedback circuit increases
21 there is a large increase in amplitude of the output voltage as the capacitance increases
35 the frequency remains unchanged as capacitance is varied
42 the frequency of oscillation decreases as the capacitance increases
53 there is a large decrease in amplitude of the output voltage as the capacitance increases

Frequency of oscillation as a function of the power supply voltage

- Return the circuit to the starting conditions of figure B34.4, removing jumper J15 and connecting J14, and adjust RV5 to obtain oscillation
- vary the power supply voltage Vcc of the 20%, and measure the corresponding frequency of oscillation with the frequency meter
- check if, and how the frequency of oscillation varies as the power supply voltage varies

Q2 From the above measurements, these changes to the power supply voltage, change the frequency by:

SET

A B
12 less than the 0.01%
24 between the 0.01% and the 0.5%
31 between the 0.5% and the 5%
43 more than the 5%

- Set + Vcc adjustable power supply to 12 V .

SIS1	Turn switch S1 ON
SIS2	Press INS

Q3 A very important modification has been made to the circuit: what is it?

SET

A B
15 the power supply voltage has been cut off
21 the feedback between output and input of transistor T4 has been disconnected
32 there is a short-circuit between the collector and emitter of the transistor
43 the bias point of the circuit has been varied
54 the dynamic gain of the transistor has been reduced

SIS1	Turn switch S1 OFF

SIS1	Turn S11 ON
SIS2	Press INS

Q4 Why doesn't the circuit oscillate?
SET
AB
15 the power supply has been disconnected
21 the feedback between the output and input of transistor T4 has been disconnected
33 the base of transistor T4 has been short-circuited to ground
42 there is a short-circuit between the collector and emitter of the transistor
54 the bias point of T4 has been changed
SIS1 \quad Turn switch S11 OFF

B34.3 SUMMARY QUESTIONS

Q5 The feedback circuit of a Colpitts oscillator consists of:

SET

A B
12 an inductance and two capacitances
21 a capacitance and two inductances
35 a resistance and two inductances
43 two resistances and an inductance
54 two capacitances and a resistance

Q6 In a Colpitts oscillator, the following equation applies:
SET
AB
$13 \omega 0=1 / \mathrm{R} \cdot \mathrm{C}$
24 fo $=1 / \pi \cdot \sqrt{ }(2 \cdot L \cdot C)$
$31 \mathrm{~A}=\mathrm{L} / \mathrm{C} 1+\mathrm{C} 2$
$45 \mathrm{~A}=(\mathrm{Cl}+\mathrm{C} 2) / \mathrm{C} 1$
$52 \mathrm{~A}=\mathrm{C} 2 /(\mathrm{Cl}+\mathrm{C} 2)$

Q7 Calculate the operating frequency of the Colpitts oscillator, when $L=$ $300 \mu \mathrm{H}$ and $\mathrm{Cl}=C 2=C=33 \mathrm{pF}$:

SET

A B
16 fo $=2.6 \mathrm{MHz}$
21 fo $=2.26 \mathrm{MHz}$
$35 \mathrm{fo}=21 \mathrm{kHz}$
42 fo $=32 \mathrm{MHz}$
54 fo $=500 \mathrm{~Hz}$
$63 \mathrm{fo}=226 \mathrm{MHz}$

LESSON B35: HARTLEY AND MEISSNER OSCILLATORS

OBJECTIVES

- Analysis of the frequency of oscillation as a function of the inductance and capacitance
- frequency behavior with variations of the power supply voltage

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV, module holder structure mod.MU/EV), Individual control unit mod. SIS1/SIS2/SIS3
- experiment module mod.MCM6/EV
- oscilloscope and frequency meter

B35.1 BASIC THEORY

Hartley Oscillator

The Hartley oscillator is a sine wave oscillator with an LC feedback circuit. Figure B35.1 shows the general principles.

Fig. B35.1

The circuit comprises an amplifier and a π-feedback network, consisting of two inductances and a capacitance. Provided the amplifier has a high input resistance, the circuit of figure B35.1 can be represented by the equivalent circuit of figure B35.2, where A is the amplification of the system.

Fig. B35.2
If the two inductances have a mutual inductance M , and if their internal resistances are neglected, the conditions for oscillation are expressed by the following relationships:

$$
\mathrm{A}=\left(\mathrm{L}_{2}+\mathrm{M}\right) /\left(\mathrm{L}_{1}+\mathrm{M}\right) \quad \omega_{0} \cdot\left(\mathrm{~L}_{1}+\mathrm{L}_{2}+2 \cdot \mathrm{M}\right)-1 / \omega_{0} \cdot \mathrm{C}=0
$$

From the second relation you can determine the frequency of oscillation fo:
$\mathrm{f}_{\mathrm{O}}=1 / 2 \pi \cdot V(\mathrm{~L} \cdot \mathrm{C}) \quad[\mathrm{Hz}] \quad$ where $\mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2}+2 \cdot \mathrm{M}$
As in the Colpitts oscillator, the frequency of oscillation is inversely proportional to the square root of the product $\mathrm{L} \cdot \mathrm{C}$.

If the active component of the amplifier is a BJT, a suitable circuit is the one of figure B35.3, in which the feedback is taken from the collector.

Fig. B35.3

Another possible configuration is the one of figure B35.4a, in which the feedback signal is taken from the emitter. The dynamic equivalent of the circuit is represented in figure B35.4b.

Fig. B35.4
At switch-on, a starting perturbation creates a free oscillation in the resonant circuit, and causes a voltage $\mathrm{v}_{12}=\mathrm{v}_{\mathrm{bc}}$ between points 1 and 2 . Thanks to the mid-point connection in the inductor (or inductive divider), v_{cb} is divided into two voltages v_{be} and v_{ce}, which are phase shifted and so satisfy the condition for self-oscillation.

Meissner Oscillator

The Meissner oscillator uses a transformer as a feedback system, as shown in figure B35.5.

Fig. B35.5
A tuned resonant circuit, consisting of a winding of the transformer and a capacitance C is connected to the collector. Neglecting the losses of the transformer, there must be a frequency (called the resonant frequency) at which the impedance of the resonant circuit is purely resistive. In these conditions the signal between collector and ground is shifted by 180° with respect to the base input signal.

If the winding of the transformer connected to the base is opposed to the one of the collector, the transformer introduces a further shift of 180°, and takes the output signal back in phase with the input one (positive reaction).
At the resonant frequency, the phase condition required for oscillation is met. The frequency is:
fo $=1 /(2 \pi \cdot \sqrt{ }(\mathrm{~L} \cdot \mathrm{C}))[\mathrm{Hz}]$

B35.2 EXERCISES

MCM6	Disconnect all jumpers Set in OFF all S switches
SIS1	Turn all switches $O F F$
SIS2	Insert lesson code: B35

Due to the capacitance introduced by the measurement probes, it's better to use the $10: 1$ compensated probes.

Hartley Oscillator with Collector Feedback

Frequency dependence on L and C

- Set +Vcc adjustable power supply to 12 V .
- Insert jumpers J13, J16, J17, J19, J21, J23, J24, J28 to produce the circuit of fig.B35.6.

Fig. B35.6

- display the signal present at the output (terminal 2) on the oscilloscope. Adjust RV5 and the core of L1,L2 to obtain the best sine wave possible, and measure its frequency
- simultaneously display the signal present at terminal 2 and the base of the transistor T4

Q1 What is the approximate phase shift between these two signals?
SET
A B
$15 \quad 0^{\circ}$
$23 \quad 30^{\circ}$
31270°
42180°
5490°

The two signals must be phase shifted to satisfy the condition necessary for the oscillation, when an inverting amplifier is used as in this case.

- rotate the core of the coil L1-L2 and observe the effect on the frequency of the generated signal
- remove jumper J17 and connect J18 so that the capacitor C14 is replaced with C 15
- measure the new frequency of oscillation

As in the case of the Colpitts oscillator, a reduction of capacitance or inductance value in the feedback network causes the frequency of oscillation to increase, and vice versa.

- Using this new circuit, measure the frequencies of oscillation of the circuit when the Vcc power supply voltage is varied of the 20%
- note that this oscillator too, is only slightly sensitive to the power supply voltage variations.

Hartley Oscillator with Emitter Feedback

- Set Vcc adjustable power supply to 12 V .
- Remove jumpers J13, J22, insert J12, to produce the circuit of figure B35.7.

fig. B35.7
- Display the signal present at terminal 1 on the oscilloscope, adjusting RV5 to obtain the best sine wave.
- measure the frequency of the output signal
- display the signals present on the base and emitter of the transistor T4 on the oscilloscope.

Q2 What is the approximate phase shift between the two displayed signals?
SET
A B
110°
2360°
3590°
42180°
54270°

SIS1	Turn switch S3 ON
$\boldsymbol{O S I S 2}$	Press INS

Q3 Note that frequency have been changes: from this, what is the change of capacitance in the feedback circuit?

SET
A B
13 the capacitance is increased. Another capacitance has been connected in parallel with C 15
21 the capacitance is diminished. Another capacitance has been connected in series with C15
34 no modification has been carried out.
42 the capacitance is increased. Another capacitance has been put in series with C15

SIS1	Turn switch S3 OFF

- rotate the core of the coil L1-L2, or remove J18 and insert J17, so that the capacitor C 15 is replaced with C14. Note the change in frequency
- measure the oscillation frequency of the 20% variation of the power supply voltage.

Meissner Oscillator

- Set Vcc adjustable power supply to 12 V .
- Remove all jumpers, insert J13, J25, J27, J29 to produce the circuit of figure B35.8.

fig. B35.8
- display the output signal present at terminal 2 with the oscilloscope
- adjust RV5 to obtain a sine signal
- measure the output frequency
- display the signals present at terminal 2 and on the base of transistor T 4 , and examine the phase relation

As an inverting amplifier is used, in this case too, circuit oscillation is possible if the two signals are phase shifted.

- Rotate the core of L4, and note the frequency change in the output signal
- if necessary, adjust RV5 to obtain the sine waveform without distortions
- remove jumper J27 and insert J26, so that capacitor C22 is replaced with capacitor C 21 , and note the change in frequency

Q4 From the frequency measurements carried out, and knowing the value of capacitances C21 and C22, it is possible to determine the value of the inductance. What is the approximate value of inductance?
SET
A B
$13 \quad 100 \mathrm{H}$
$21 \quad 0.1 \mu \mathrm{H}$
$35 \quad 1 \mathrm{H}$
$44 \quad 1 \mathrm{mH}$
$56 \quad 10 \mathrm{mH}$
$62 \quad 10 \mu \mathrm{H}$

- measure the change in frequency for a 20% variation of the Vcc power supply voltage.

B35.3 SUMMARY QUESTIONS

Q5 The π-feedback circuit of a Hartley oscillator consists of:

SET

A B
15 and inductance and two capacitances
21 a capacitance and two inductances
32 a resistance and two inductances
43 two resistors and a capacitance
54 two capacitances and a resistance
Q6 Neglecting the mutual inductance, the oscillation condition in a Hartley oscillator is:

SET

A B
$13 \quad \mathrm{~A}=\mathrm{L}_{2} / \mathrm{L}_{1}$
$21 \quad \mathrm{~A}=\mathrm{C}_{1} / \mathrm{C}_{2}$
$34 \quad \mathrm{~A}=\mathrm{C} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)$
$45 \quad \mathrm{~A}=\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right) / 2$
$52 \quad \mathrm{~A}=2 /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)$
Q7 Neglecting the mutual inductance, calculate the operating frequency of a Hartley oscillator with $C=300 \mathrm{pF}$ and $L 1=L 2=33.3 \mu \mathrm{H}$:

SET

A B
15 fo $=0.58 \mathrm{MHz}$
23 fo $=567 \mathrm{MHz}$
32 fo $=1.12 \mathrm{MHz}$
41 fo $=919 \mathrm{kHz}$
$54 \quad$ fo $=1 \mathrm{kHz}$

Q8 Neglecting the mutual inductance, calculate the angular frequency of a Meissner oscillator circuit which has a capacitance $C=10 \mathrm{pF}, L 1=L 2=400 \mu \mathrm{H}$:

SET

AB
$12 \omega 0=2.52 \cdot 10^{6} \mathrm{rd} / \mathrm{s}$
$23 \omega \omega=11.18 \cdot 10^{6} \mathrm{rd} / \mathrm{s}$
$35 \quad \omega 0=1.45 \cdot 10^{6} \mathrm{rd} / \mathrm{s}$
$41 \quad \omega 0=4.07 \cdot 10^{6} \mathrm{rd} / \mathrm{s}$
$54 \omega 0=5 \cdot 10^{6} \mathrm{rd} / \mathrm{s}$

LESSON B36: QUARTZ OSCILLATORS

OBJECTIVES

- Using a quartz oscillator with a BJT amplifier
- measurement of the frequency of oscillation
- frequency of oscillation as a function of the supply voltage

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV, module holder structure mod.MU/EV), Individual control unit mod. SIS1/SIS2/SIS3
- experiment module mod.MCM6/EV
- oscilloscope and frequency meter.

B36.1 BASIC THEORY

Frequency Stability of Oscillators

The frequency of oscillation of an oscillator can deviate from its normal fixed value for the following reasons:

- components aging
- change of the ambient conditions (temperature, humidity, etc.)
- unstable power supply voltage, which causes the bias point of the active device to shift, with consequent variation of the device parameters.

Crystal Oscillators

These are oscillators characterized by a high frequency stability, obtained by inserting a piezoelectric quartz crystal into the feedback network. The behavior of a quartz crystal is similar to an LC resonant circuit with a very high Q factor.

Some natural or synthetic materials, such as quartz, have piezoelectric properties. If they undergo a mechanical deformation, they generate a potential difference between their faces. The reverse situation also applies: the application of a constant voltage across the crystal will mechanically deform it. Removing this voltage, the deformation disappears, passing through a series of intermediate states, in a damped oscillation. The frequency of this oscillation depends on the geometric and mechanical characteristics of the crystal.

The excitation of the crystal with an AC voltage whose frequency equals the natural one will greatly increase the amplitude of vibration. The resonance is highly selective, occurring over a very narrow frequency range. At resonance, the mechanical and electrical energy exchange
occurs with very low losses in the crystal. As a result it constitutes an electromechanical resonator of very high quality.

Quartz Crystal Equivalent Circuit

Figures B36.1a/b represent the symbol for a quartz crystal, and its equivalent electrical circuit.

a)

b)
fig. B36.1
The capacitance Co is the electrostatic capacitance of the two metallic faces of the crystal, and of the parasitic capacitances due to the terminals and the container.

The series $\mathrm{R}, \mathrm{L}, \mathrm{C}$ represent the equivalent electrical circuit of the crystal itself.

Ignoring resistor R (usually a low value), the crystal consists of reactive components. The reactance behavior is illustrated in figure B36.2. From the graph, note that the impedance is zero for two values of angular frequency, called ω s and ω, which are respectively:
$\omega_{\mathrm{S}}{ }^{2}=1 /(\mathrm{L} \cdot \mathrm{C})$

$$
\omega_{\mathrm{p}}^{2}=(1 / \mathrm{L}) \cdot\left[(1 / \mathrm{C})+\left(1 / \mathrm{C}_{\mathrm{o}}\right)\right]
$$

$\mathrm{f}_{\mathrm{s}}=\omega_{\mathrm{s}} / 2 \pi$ is called "series resonant frequency", $\mathrm{f}_{\mathrm{p}}=\omega_{\mathrm{p}} / 2 \pi$ "parallel resonant frequency". As the value of C is much lower than Co, they have almost equal values.

fig. B36.2

From the curve it can be seen that:

- when the operating frequency ranges between ω_{s} and ω_{p} the quartz has an inductive behavior
- outside this range, the crystal behaves as a capacitance.

Quartz Oscillator with BJT

The circuit shown in figure B36.3 is known as a Pierce oscillator.

fig. B36.3
The Pierce oscillator is similar to the Colpitts one, where the inductance has been replaced with the quartz. To make the system oscillate, the quartz operation must be inductive, and so the frequency of oscillation must lie between fs and fp . The equivalent diagram of the Pierce oscillator is represented in figure B36.4.

Fig. B36.4
This circuit can be modified to obtain a slight adjustment of the operating frequency of the oscillator. To do this, a variable control capacitance CC is connected in series with the quartz (figure B36.5).

Fig. B36.5

B36.2 EXERCISES

\rightarrow MCM6	Disconnect all jumpers Set in OFF all S switches
SIS1	Turn all switches $O F F$
$S I S 2$	Insert lesson code: B36

- Set + Vcc adjustable power supply to 12 V .
- Insert jumper Jcc, to produce the circuit of figure B36.6.

Fig. B36.6

- on the oscilloscope, display the output signal present at terminal 3. Use a $10: 1$ probe to limit its capacitive effect
- measure the output signal frequency
- compare the measured frequency value to the nominal one which is generally printed on the quartz crystal case

Q1 What is the output signal frequency?

SET
A B
$13 \quad 100 \mathrm{kHz}$
$21 \quad 10 \mathrm{kHz}$
$35 \quad 1 \mathrm{kHz}$
$46 \quad 20 \mathrm{kHz}$
541 MHz
6210 MHz

- On the oscilloscope, display the signals present at the output of terminal 3, and also on the base of the transistor T5

Q2 What is the approximate phase shift between the two signals?

SET	
A B	
13	0°
21	90°
36	120°
42	180°
54	360°
65	270°

The amplifier stage used is inverting; so to obtain the oscillation condition, the signal present at the input must have been phase shifted with respect to the output signal.

Variation of the Power Supply Voltage

- In this Pierce oscillator measure the frequency when the power supply voltage is varied of the 20%.

A special characteristic of the quartz oscillator is the high stability of the frequency of oscillation. The measured frequencies should practically coincide.

- Adjust the + Vcc variable power supply to 12 V .

SIS1	Turn switch S4 ON
SIS2	Press INS

Q3 From the analysis of the wave-forms and the voltages, what modification has been added to the circuit?

SET

A B
14 the power supply voltage is halved
25 the connection between R17 and the transistor's base is removed
32 the resistor R18 is short-circuited
43 the base and emitter of T5 are short-circuited
51 the resistor R19 is short-circuited

B36.3 SUMMARY QUESTIONS

Q4 What main advantage does a quartz oscillator generally provide?

SET

A B
14 a small output resistance of the oscillator
21 a frequency depending on temperature
33 a high frequency stability
45 a variable frequency of oscillation on a wide range of values
52 the generation of a signal with many harmonics.
Q5 The operating condition of a crystal in a Pierce circuit requires that the crystal's behaviour is mainly:

SET

A B
13 capacitive
21 inductive
35 resistive
42 resistive - inductive
54 capacitive resistive
Q6 What is the frequency of oscillation " f " of a Pierce oscillator which uses a quartz characterized by $f s=2 \mathrm{MHz}$ and $f p=2.01 \mathrm{MHz}$?

SET
A B
$13 \mathrm{f}<\mathrm{fs}$
$21 \mathrm{f}>\mathrm{fp}$
32 fs $<\mathrm{f}<\mathrm{fp}$
$45 \mathrm{f}>(\mathrm{fp}+\mathrm{fs}) / 2$
54 f $<\mathrm{fp} / 4$
Q7 What determines the frequency of oscillation of a Pierce circuit?
SET
A B
11 the quartz crystal
24 the power supply voltage
35 the gain of the amplifier used
43 the output load of the device
52 the bias point of the transistor used

LESSON B37: ASTABLE MULTIVIBRATOR

OBJECTIVES

- Using a BJT astable multivibrator:
- analysis of the wave-forms present in the circuit
- measurement of the frequency and the amplitude of oscillation relationship between frequency and time constant RC pulse generator (calculation of the "duty cycle")

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV, module holder structure mod.MU/EV), Individual control unit mod. SIS1/SIS2/SIS3
- experiment module mod.MCM6/EV
- oscilloscope

B37.1 BASIC THEORY

The astable multivibrator is a digital oscillator, as the square wave output can take only two values. Figure B37.1 represents the basic circuit of a BJT astable.

fig. B37.1

Operation
Suppose at first that T1 is off and T2 saturated. In this condition capacitor C 1 has its right hand side connected to the voltage $\mathrm{V}_{\text {BEsat }}$. The left side will rise to Vcc by a charging current through C1 and Rc. The capacitor C2 meanwhile, has its left side at the potential -Vcc, and the right one at $\mathrm{V}_{\text {CEsat. }}$. Starting from these conditions C 2 begins to charge up through resistor R2, starting from the voltage -Vcc and rising towards Vcc: in this way the base voltage of the transistor Tl goes to a positive potential. This charging process is characterized by a time constant:
$\tau_{2}=\mathrm{C}_{2} \cdot \mathrm{R}_{2}$
Once the threshold voltage of Tl is reached, it switches on, going into saturation (figure B37.2). As the voltages across capacitor C1 cannot change instantaneously, the voltage on the right side, connected to the base of T2, drops to -Vcc , forcing T 2 to cut off.

The switching process can continue as the roles between the transistors T 1 and T 2 are now reversed.

fig. B37.2

The frequency of oscillation of the circuit is:
$\mathrm{f}=1 /\left(\left(\tau_{1}+\tau_{2}\right) \cdot \ln 2\right)$
where $\tau_{1}=\mathrm{C}_{1} . \mathrm{R}_{1}$
$\tau_{2}=C_{2} \cdot \mathrm{R}_{2}$
$\ln 2 \approx 0.69$
If $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$ and $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}$ so:
$\mathrm{f}=1 /(2 \cdot \mathrm{R} \cdot \mathrm{C} \cdot \ln 2)=1 /(1.38 \cdot \mathrm{R} \cdot \mathrm{C})$
[Hz]

B37.2 EXERCISES

OCM6	Disconnect all jumpers
SIS1	Turn all switches OFF
SIS2	Insert lesson code: B37

- Insert jumpers J31, J33, J41, J44, J48, J53 to produce the circuit of fig.B37.3.

fig. B37.3
- Using the oscilloscope display the signals present at terminal 5 , and at the collector of transistor T6. If the circuit does not oscillate, remove and then insert jumper J41.

Q1 How do the displayed signals behave?

SET

A B
14 the signal on the collector of T7 is almost a square wave, the other is triangular
21 the signal on the collector of T6 is almost a square wave, the other is a sine wave
35 both signals have a sine wave behavior
42 both signals are similar to a square wave, but are in phase opposition
53 the signals have a saw-tooth behavior
The symmetry of the circuit makes the voltages of the collectors of the two transistors equal but opposite in phase, as when the transistor T6 conducts, transistor T7 is cut off, and vice versa.

S SISI	Turn switch S6 ON
OSIS2	Press INS

Q2 By analyzing the signals, what modification has been introduced into the circuit?

SET

A B
14 the capacitance C29 is increased
25 C29 and R22 are increased
31 C34 is decreased
42 C34 is increased
53 R31 is decreased

SIS1	Turn switch S6 OFF

- display the voltages present at terminal 5 , and at the common point between the resistor R31 and the capacitor C34
- insert jumpers J32 and J52 and note the variations of the signals

Q3 What improvement can you notice on the output signal?

SET

A B
12 no significant change can be noticed
21 the signal has steeper rising edges
35 the signal has less steep rising edges
43 the signal has larger amplitude
54 the signal has a variable frequency
At the common point between R31 and C34, the signal has an exponential behavior as it is the voltage of capacitor C 34 which charges to Vce through R31. When the jumpers J32 and J52 are inserted, some resistors are placed in parallel to R22 and R36. This reduces the charging time of capacitors C34 and C29. In the meantime the transistors are cut off.

- Keep jumpers J32 and J52 inserted

SIS1	Turn switch S8 ON
SIS2	Press INS

Q4 The rising edge has now changed. Why is this?

SET

AB
13 the power supply voltage is changed
21 the resistor R36 is increased
35 the resistor R36 is disconnected
42 the diode D5 is short-circuited
54 the value of the resistor R29 is changed

SIS1	Turn switch S8 OFF

- The rise time of the output signal can be improved by creating the circuit shown in figure B37.4, removing jumpers J31 and J53.

fig. B37.4
- display the signals present at terminal 5, and at the common point of R31 and C34, on the oscilloscope
- analyze the behavior of the rising edges of the displayed voltages. Compare them with those obtained in the last circuit
When the transistor T7 is cut off, the charging of the capacitor C34, due to the presence of the diode D6, does not occur anymore through the collector resistance R36, but instead through resistor R35, letting the collector rise quickly to the voltage Vcc.
Finally, note that when the transistor is conducting, the diode conducts too, and the collector resistance is equal to the parallel equivalent of R35 and R36
- remove jumper J41 and insert J40 so that the resistor R29 is replaced with the R28

Q5 What change is observed on the output signal?

SET

A B
16 the signal now has a saw-tooth behavior
25 the signal is now sinusoidal
31 the signal is now all negative
42 the signal has a triangular wave behavior
54 the signal is a square wave with an average value of zero
63 the duration of the positive pulses is reduced

- measure the duration T_{ON} of the positive pulses and the complete period $\mathrm{T}=\mathrm{T}_{\text {ON }}+\mathrm{T}_{\text {OFF }}$ of the rectangular wave
- the duty-cycle of a pulse signal is defined as the percentage ratio of the duration T_{ON} of the pulse and its period T :
- Duty-cycle $=\left(\mathrm{T}_{\mathrm{ON}} / \mathrm{T}\right) \cdot 100$
- calculate the duty-cycle of the generated pulse signal.

\boldsymbol{S} SIS1	Turn switch S5 ON
\boldsymbol{S} SIS2	Press INS

Q6 Why has the duty-cycle changed?
SET
A B
12 the power supply voltage is changed
21 R28 is reduced
35 R28 is increased
43 a capacitance has been placed in parallel with R28
54 the emitter and collector of T6 are short-circuited

SSISI
 Turn switch S5 OFF

B37.3 SUMMARY QUESTIONS

Q7 What type of circuit is an astable multivibrator ?

SET

A B
13 a bistable with two stable states
25 a frequency divider
31 an oscillator
42 a frequency multiplier
54 a sine wave generator

Q8 The output of an astable multivibrator has:
SET
A B
13 a constant amplitude
24 a constant pulse duration
32 both a constant amplitude and a constant pulse duration
41 neither a constant amplitude nor a constant pulse duration

Q9 Determine the frequency of oscillation of the astable of figure B37.1 with $C 1=10 n F, C 2=0.1 \mu F, R 1=100 \mathrm{~K} \Omega$ and $R 2=10 \mathrm{~K} \Omega$

SET
AB
$13 \mathrm{f}=361 \mathrm{~Hz}$
$26 \mathrm{f}=1000 \mathrm{~Hz}$
$31 \mathrm{f}=724 \mathrm{~Hz}$
$42 \mathrm{f}=100 \mathrm{~Hz}$
$54 \mathrm{f}=127 \mathrm{~Hz}$
$65 \mathrm{f}=1421 \mathrm{~Hz}$

LESSON B38: MONOSTABLE MULTIVIBRATOR

objectives

- to understand and use a BJT monostable multivibrator
- analysis of its operation with square wave input
- duration of the output pulses as a function of the frequency of the control signal
- relationship between time constant RC and duration of the output pulse

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV, module holder structure mod.MU/EV), Individual control unit mod. SIS1/SIS2/SIS3
- experiment module mod.MCM6/EV
- function generator
- oscilloscope
- multimeter

B38.1 BASIC THEORY

The monostable multivibrator produces a pulse of fixed duration, when triggered by an input pulse of very short duration. When used in this way the monostable multivibrator is also called a "pulse generator". The figure B38.1 shows the basic circuit of a transistor monostable.

The duration T of the output pulses depends on R and C and is given by:

$$
\begin{equation*}
\mathrm{T}=\mathrm{R} \cdot \mathrm{C} \cdot \ln 2 \tag{s}
\end{equation*}
$$

where $\ln 2 \approx 0.69$

fig. B38.I

Operation

In the normal or quiescent state, T 2 is kept saturated by the base current flowing through R. The collector of T2, which is connected by R1 to the base of transistor Tl is at the potential $\mathrm{V}_{\text {CEsat }}$ This ensures that T 1 is held in the OFF state. The capacitor C is charged to the voltage Vcc.
If a sufficiently large signal is sent to the multivibrator input it will turn on T 1 , reversing the previous condition. T 2 is now cut off, while T 1 saturates. This situation is not stable however, as the right hand side of C , now at potential -Vcc, charges through R rising towards Vcc. When its voltage reaches and then exceeds $\mathrm{V}_{\mathrm{BE} 2}$ of the T 2 , then T 2 will start to conduct and so return the circuit to its original stable configuration.

Control Circuit

The circuit of fig. B38.1 switches on a positive voltage edge. It is often more useful to start the multivibrator on a falling edge of the input signal, as shown in fig.B38.2. The circuit of figure B38.3 will do this.

fig. B38.2

fig. B38. 3

The starting circuit has some extra components Cd, Dd and Rd which form a differentiator circuit.

Suppose that in the normal or quiescent state T 2 is conducting, and that a rectangular wave signal is applied to Cd . On the falling edge of the input signal, i.e. when the input value goes towards zero, this signal is differentiated and Cd transfers this variation to the cathode of diode Dd. The cathode, which initially is at an almost zero volts due to Rd connected to the collector of T2, now goes to negative values. The diode starts is now forward biased, and so it is conducting. The base of T2 goes to a lower voltage, so switching it off. If the input signal variation is positive (rising edge) there is a positive voltage on the cathode of Dd, which stays reverse biased, keeping T2 on.

B38.2 EXERCISES

OCM6	Disconnect all jumpers
SIS1	Turn all switches OFF
SIS2	Insert lesson code: B38

Monostable Multivibrator in the Quiescent State

- Insert jumpers J31, J34, J36, J40, J42, J43, J49, J50, J53 to produce the circuit of figure B38.4.

fig. B38.4
- measure the dc voltages present at the base and collector of transistor T6, and repeat for the base and collector of the transistor T 7

Q1 What is the condition of the two transistors $T 6$ and $T 7$?

SET

A B
15 both transistors are off
24 both transistors are saturated
33 transistor T6 is off, T7 is saturated
41 transistor T6 is saturated, T7 is off
52 transistor T6 is off, T 7 is in an intermediate state

Using the multivibrator to give a square wave output

- Connect at terminals 4 and Ground the function generator with square wave signal, 1 KHz and zero voltage amplitude initially.
- Connect the oscilloscope channel 1 at terminal 4 (input signal supplied by the generator) and channel 2 at terminal 5 (output signal of the multivibrator).
- Slowly increase the input signal amplitude until the display shows a rectangular wave at the output.
- change channel 1 of the oscilloscope so that the signal on the base of T6 is displayed. You should obtain voltages similar to those shown in figure B38.5.

Fig. B38.5
Capacitor C32 allows pulses to be sent to the base of T6 on the rising and falling edges of the square wave from the generator. Resistor R30 limits their amplitude. The positive pulses make T6 switch on and start the pulse seen at the output. The negative pulses negatively bias the base of T6, which keep it off.

Frequency of the Synchronization Pulses

- From last circuit, measure the output pulse duration.
- vary the input signal frequency in the range $500 \mathrm{~Hz}-2 \mathrm{kHz}$. note whether the duration of the output pulse changes
- increase the input signal frequency to about 3 KHz , and note the behavior of the output signal

Q2 How do the output pulses change as the input frequency is varied?

SET

A B
12 the amplitude and duration of the output pulses remain the same
21 the pulses vary in amplitude, but not in frequency
35 the output frequency drops as the input frequency rises
43 the output signal has very sharp pulses when the input passes through zero
54 the output signal starts to look like a sine wave

- increase the input signal frequency again and note that for an operating frequency above approximately 3 KHz , the output pulses are no longer synchronized to the input ones
- measure the maximum frequency of the control pulses before this loss of synchronization occurs

Output Pulse Duration

- Now, set the input square wave signal with 10 KHz , and measure the output pulse duration
- Insert jumper J33, so to increase the capacitance connected; measure the output pulse duration
- Remove jumper J40 and insert J41, so that the inserted resistor increases; evaluate again the output pulse duration

Q3 How is the duration of the output pulse affected?

SET

A B
15 when the resistance increases the pulse duration decreases
24 when the capacitance increases the duration decreases
32 the duration is not changed by increasing either the capacitance or resistance
41 the duration is increased by increasing either the capacitance or the resistor
53 either of these changes reduces the output signal to zero

- replace R 29 with R 28 by removing J41 and connecting J40

SIS1	Turn switch S5 ON
SIS2	Press INS

Q4 How has this modified the circuit?

SET
A B
12 the power supply voltage has changed
25 the base current of T6 has changed
34 the capacitance has been increased
41 R28 is increased
53 R28 is decreased

$\rho S I S 1$

Turn switch S5 OFF

Synchronization on the Falling Edge of the Input Signal

- From last circuit insert jumper J46 to produce the circuit of figure B38.6.

fig. B38.6
- Adjust the input square wave signal with 1 KHz and about 5 Vpp .
- Display the input and the output signal on the oscilloscope. Check to see if the output is synchronized to the rising edge or the falling edge of the input signal

B38.3 SUMMARY QUESTIONS

Q5 An astable multivibrator can generate:

SET

A B
12 a sine wave
21 a pulse
35 a triangular pulse
43 a square wave
54 a saw-tooth wave
Q6 The output pulse duration of a monostable is:

SET

A B
12 dependent on the input signal frequency
25 fixed, and depends only on the time constant RC
34 independent of the time constant RC of the monostable
41 dependent on the power supply voltage
53 dependent on the gain of the active device
Q7 In its quiescent state, the output voltage of a monostable is:

SET

A B
12 zero
25 a maximum
31 variable
43 similar to a sine wave
54 exponential in shape
Q8 Determine the value of the capacitance C required to obtain a pulse of 2 milliseconds from a monostable using a resistor R of $270 \mathrm{~K} \Omega$:

SET

A B
$15 \quad \mathrm{C}=100 \mathrm{nF}$
$23 \quad \mathrm{C}=5.4 \mu \mathrm{~F}$
$34 \mathrm{C}=54 \mathrm{nF}$
$42 \quad \mathrm{C}=100 \mu \mathrm{~F}$
$51 \quad \mathrm{C}=10 \mathrm{nF}$

LESSON B39: BISTABLE MULTIVIBRATOR

OBJECTIVES

- To understand and use a BJT bistable multivibrator
- Quiescent state operation
- Dynamic operation with square wave input

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV, module holder structure mod.MU/EV), Individual control unit mod. SIS1/SIS2/SIS3
- experiment module mod.MCM6/EV
- function generator
- oscilloscope
- multimeter

B39.1 BASIC THEORY

The bistable multivibrator is so called because it has two stable operating states. The circuit can pass from one state to the other if correctly triggered at the input. This means that a bistable multivibrator can be used as a memory circuit: it can switch under the control of a small pulse sent to one of its inputs, and then keep in that state until a new pulse is sent Figure B39.1 represents the basic diagram of a transistor bistable.
The bistable multivibrator is also called a "flip-flop".

Operation

The circuit of figure B39.1 is designed so that when T1 conducts T2 is switched off, and vice versa. When T2 conducts, its collector is almost at zero potential, which keeps the transistor T 1 off, as the collector of T2 is connected to the base of T1 through R1.
If at the base of T 1 you apply a signal sufficient to make T 1 conducting, the situation is reversed: the transistor T2 is cut off, as its base is connected to the collector of T 1 . T 1 will now remain conducting, as the
collector of T 2 is at the voltage Vcc. If the control signal disappears, it does not change the new, stable state of the flip-flop.

Control Circuit and Propagation Times

The circuit of figure B39.2 is an example of a symmetrical control circuit. A control is called symmetrical when the switching occurs at every pulse, irrespective of the state of the bistable.

With diodes D1 and D2, a negative pulse acts only on the transistor which is conducting, causing it to cut off and the bistable to switch.

Fig. B39.2

The propagation time is the time lapse between the application of the input pulse and the output switching. This time can be reduced by inserting two small capacitors C 1 , in parallel with the bias resistors R1.

Suppose that T 2 is "ON" and a pulse is applied to the input, to change the state of the device. The transistor T2 is cut off and its collector voltage rises rapidly towards Vcc. This voltage is transmitted to the base of Tl by means of the capacitance C , which short-circuits the resistor R1, driving more current into the base of T1.

These switching capacitors are called "speed-up" capacitors. The value of the speed-up capacitors used depends on the input capacitance of the transistor and the resistors R1 and R2.

B39.2 EXERCISES

MCM6	Disconnect all jumpers
SIS1	Turn all switches OFF
SIS2	Insert lesson code: B39

Circuit conditions in a stable state

- Insert jumpers J31, J32, J35, J37, J42, J45, J49, J50, J52, J53 to produce the circuit of figure B39.3.

fig. B39.3
- measure the voltages on the bases and the collectors of the transistors T6 and T7, and determine which transistor is on and which is off
- connect the oscilloscope to display the output voltage at terminal 5
- using jumper J38 or J51, short circuit the base of the conducting (ON) transistor temporarily to ground, and describe the changes in output voltages

The act of connecting the base of the conducting transistor to ground turns it off and makes the bistable switch. Removing the short circuit has no further effect.

- Using jumpers J38 or J51, short circuit to ground alternately the base of the conducting transistor and check the two-stage operation of the bistable multivibrator.

Frequency Divider

- From last circuit insert jumpers J 30 , J39, J47, J54 to produce the circuit of figure B39.4.

Fig. B39.4

- Connect at terminals 4 and ground the function generator with a square wave, 1 KHz and 6 Vpp .
- display the input and output signals on the oscilloscope, and describe their behavior
- measure the frequency and amplitude of the output signal

Q1 What are the values measured?

SET

A B
15 the voltage and frequency are zero
21 the voltage is about 10 V and the frequency is double the input frequency
32 the voltage is half the input one and the frequency is equal to the input frequency
43 the voltage is double the input one and the frequency is equal to the input frequency
54 the maximum voltage is about 10 V and the frequency is half the input frequency

The bistable switches on the negative voltage edges only; this means that the flip-flop can be used as frequency divider.

Maximum Switching Frequency

- Increase the input frequency, until the bistable circuit does not operate properly anymore. This can be observed from the waveform of the output signal, when its frequency is not related to the input one anymore
- measure the maximum frequency at which the circuit still operates properly
- insert jumpers J33 and J48, so that the two capacitors C29 and C34 are put in parallel with resistors R24 and R33
- measure the new maximum frequency at which the circuit operates properly

Q2 From these measurements which one of the following applies?
SET
AB
13 the additional capacitances reduce the presence of spurious pulses in the output signal
25 the capacitances reduce the heat dissipated by the transistors
32 the capacitances reduce the switching times of the transistors, and increase the useful frequency range of the circuit
41 the capacitances filter out intermittent pulses introduced by the power supply
54 the capacitances do not produce any sigificant advantage

B39.3 SUMMARY QUESTIONS

Q3 A bistable multivibrator can switch when triggered by:

SET

A B

15 pulses
23 fast voltage changes
34 square wave signals
42 large variations of power supply voltage
51 all of the above

Q4 In a stable state, the output of a bistable:

SET

A B
13 is always low
21 is always high
32 can be high or low
45 has a sine wave behavior
54 has a pulsing behavior

Q5 In a flip-flop configuration the bistable can be used as a:

SET

A B
14 pulse generator
25 sine signal generator
32 frequency divider
41 frequency multiplier
53 voltage doubler

Q6 The switching frequency of a flip-flop can be increased by using:

SET

AB
15 a frequency divider input signal
21 "speed-up" capacitors
33 a coupling inductance
42 a reduction of the power supply voltage
54 a resistor between collector and emitter of the transistors

LESSON B40: SCHMITT TRIGGER

OBJECTIVES

- to understand and use a BJT Schmitt trigger:
- measurement of the two stable output voltages calculation of the lower and upper switching thresholds circuit response to triangular waves switching speed (use of the speed-up capacitor)

EQUIPMENT REQUIRED

- base unit for the IPES system (power supply mod.PS1-PSU/EV, module holder structure mod.MU/EV), Individual control unit mod. SIS 1/SIS2/SIS3
- experiment module mod.MCM6/EV
- function generator
- oscilloscope
- multimeter

B40.1 BASIC THEORY

The Schmitt trigger is a comparator circuit with hysteresis. Figure B40.1 shows how $V_{\text {Out }}$ changes with $V_{\text {IN }}$ for a Schmitt trigger.

fig. B40.1
The output has only two values, V_{0} and V_{1}. When the output level is low ($\mathrm{V}_{\text {OUT }}=\mathrm{V}_{0}$), the input voltage must get to the higher threshold level V_{TH} before the circuit will switch. The output voltage then jumps to its high value $\left(\mathrm{V}_{1}\right)$. Because the circuit has hysteresis, the input voltage must drop to the lower threshold voltage value V_{TL} in order to make the output switch back to its lower level.

A typical circuit of a Schmitt trigger is shown in figure B40.2.

fig. B40.2

Description of Operation

Suppose that transistor T1 is off initially; the base of T2 is biased via $\mathrm{R}_{\mathrm{C} 1}, \mathrm{R} 1$ and R2 which takes the transistor T 2 to saturation. The output voltage Vout is then ($\mathrm{V}_{\mathrm{CEsat}}+\mathrm{R}_{\mathrm{E}} \cdot \mathrm{I}_{\mathrm{C} 2 \text { sat }}$), which represents the lower output level of the Schmitt trigger.

The transistor T 1 will stay cut off, even when the voltage V_{IN} reaches the emitter voltage of V_{BE}. A higher value is needed, which is the upper threshold value given by $\mathrm{V}_{T H}=\mathrm{V}_{\mathrm{BE}}+\mathrm{R}_{\mathrm{E}} \cdot \mathrm{I}_{\mathrm{C} 2 \text { sat }}$. When Tl does finally switch on, its collector voltage suddenly drops cutting the transistor T2 off, and at the same time this reduces the current through R_{E}. Because of the lower voltage across R_{E}, the voltage $V_{B E}$ of $T 1$ increases, and makes it conduct even more. The new output voltage V_{1} is then stable at its high level and is equal to Vcc.

Transistor 2 stays off until Vin falls to less than V_{TL}, the lower threshold voltage. As $\mathrm{V}_{\mathbb{I N}}$ falls, the collector of T 1 and bias voltage of T 2 increase. At the same time the voltage across R_{E} falls. Finally, when $T 2$ starts conducting the voltage across R_{E} will increase and quickly turn off T 1 . The system is then back to its starting conditions, i.e. with T1 off and T2 saturated, and with low output voltage V_{0}.

Schmitt trigger Parameters

The Schmitt trigger characteristics are, to a good approximation :
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$
If T_{2} is saturated $\left(\mathrm{V}_{\mathrm{CEsat}} \ll \mathrm{V}_{\mathrm{CC}}\right)$
$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CC}}-\left(\mathrm{R}_{\mathrm{C} 2} \cdot \mathrm{~V}_{\mathrm{CC}}\right) /\left(\mathrm{R}_{\mathrm{C} 2}+\mathrm{R}_{\mathrm{E}}\right)$

$$
\begin{aligned}
& \text { If }\left(\mathrm{R}_{\mathrm{Cl}}+\mathrm{R}_{1}\right) \cdot \mathrm{R}_{2} /\left(\mathrm{R}_{\mathrm{C} 1}+\mathrm{R}_{1}+\mathrm{R}_{2}\right) \ll\left(\mathrm{R}_{\mathrm{E}} \cdot \mathrm{~h}_{\mathrm{FE}}\right): \\
& \mathrm{V}_{\mathrm{TH}}=\mathrm{R}_{2} \cdot \mathrm{~V}_{\mathrm{CC}} /\left(\mathrm{R}_{\mathrm{C} 1}+\mathrm{R}_{1}+\mathrm{R}_{2}\right) \\
& \text { If } \mathrm{V}_{\mathrm{BEO} 2} \ll \mathrm{R}_{2} \cdot \mathrm{~V}_{\mathrm{CC}} /\left(\mathrm{R}_{\mathrm{Cl}}+\mathrm{R}_{1}+\mathrm{R}_{2}\right) \text { and neglecting } \mathrm{V}_{\mathrm{BEO}}: \\
& \mathrm{V}_{\mathrm{TL}}=\frac{\mathrm{R}_{2} \cdot \mathrm{R}_{\mathrm{E}} \cdot \mathrm{~V}_{\mathrm{CC}}}{\left(\mathrm{R}_{2} \cdot \mathrm{R}_{\mathrm{C} 1}\right)+\left(\mathrm{R}_{\mathrm{E}} \cdot\left(\mathrm{R}_{\mathrm{Cl}}+\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)}
\end{aligned}
$$

B40.2 EXERCISES

O MCM6	Disconnect all jumpers
OSISI	Turn all switches OFF
OSIS2	Insert lesson code: B40

Output voltages

- Insert jumper J57 to produce the circuit of figure B40.3.

fig.B40.3
- connect the oscilloscope between terminals 6 and ground and adjust this voltage to a minimum using trimmer RV6
- connect the oscilloscope to the collector of T9, and measure the output voltage
- vary the input voltage at terminal 6 with RV6, and observe the behavior of the output voltage

Q1 What is the result?

SET

A B
14 as the input voltage increases the output voltage increases linearly
25 as the input voltage increases the output voltage goes to zero
31 the output voltage can have only two fixed values
42 the output voltage has a sine behavior
53 the output voltage has a triangular behavior

- measure the two output voltage values, V_{0} and V_{1} and check that these values correspond to the values calculated from the formulae given in the theoretical section

A low value should be found for V_{0}, and a value close to Vcc for V_{1}.

- Remove J57 and insert J58, so that R45 replaces R44. Measure V_{0} and check that it is proportional to the resistance of emitter resistor, R_{E}

Q2 What is the new value of V_{0}, approximately?

SET		
A B		
16	1	V
23	1.5	V
34	.5	V
41	9.5	V
52	5	V
65	12	V

Threshold Voltages $\mathbf{V}_{\mathbf{T H}}$ and $\mathbf{V}_{\mathbf{T L}}$

- Adjust RV6 and measure the two input voltages at which the circuit triggers, by connecting the oscilloscope to the input terminal 6 and to the collector of T9
- Use your results to complete the following table:

	$\mathrm{R}_{\mathrm{E}}=560 \Omega$	$\mathrm{R}_{\mathrm{E}}=100 \Omega$	$\mathrm{R}_{\mathrm{E}}=0 \Omega$
$\mathrm{~V}_{\mathrm{TL}}$			
V_{TH}			
$\Delta \mathrm{V}_{\mathrm{T}}$			

- Remove jumper J58 and insert J57 to connect R44 resistor in circuit.
- repeat the last measurement and enter the data into the second column of the table
- Remove J57 and insert J59 to connect the emitters to ground.
- repeat the last measurement and enter results into the last column
- complete the table by calculating the hysteresis of the circuit: $\Delta \mathrm{V}_{\mathrm{T}}=$ $\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{TL}}$, and note how the hysteresis varies as function of the values of the resistor R_{E}. The hysteresis increases as RE increases, so when $\mathrm{RE}=0 \Omega$ the threshold voltages are almost the same.

Circuit Response to Triangular and Sine Waves

- Remove jumper J59, insert J55, J58 to produce the circuit of fig.B40.4.

Fig. B40.4

- Connect the function generator at the circuit input terminals with triangular wave, 1 KHz and 5 Vpp .
- Connect the oscilloscope channel 1 at terminal 6 (input signal) and channel 2 at terminal 7 (trigger output signal).
- vary RV6 and describe the output voltage behavior as function of input voltage present on the base of T8. (This consists of a dc component plus the generator signal)
- check that the trigger switches when the voltages V_{TL} and V_{TH} take the same values as previously measured

SISI	Turn switch S12 ON
SIS2	Press INS

Q3 What modification has now changed the circuit operation?

SET

A B
15 the resistor R37 is short-circuited
21 the transistor T8 is off
34 the power supply voltage is absent
43 the emitter resistance of the transistors is zero
52 the bias of the base of T9 is altered

SIS1	Turn switch S12 OFF

Switching Speed

- Keep the last circuit configuration.
- Using trimmer RV6, adjust the dc bias voltage at terminal 6 to 4 V
- Set a triangular input signal and 4 Vpp amplitude.
- Increase the input signal frequency until you reach a maximum value above which the circuit does not switch
- measure this maximum value fmax
- Insert jumper J56 so that the 470 pF capacitor C36 is connected in parallel to R41.

Q4 What is the effect of connecting C36?

SET

AB
14 a noticeable increase of the output signal amplitude
26 the current collector of T9 decreases
35 the circuit input resistance increases
43 the maximum operating frequency increases
52 the transistor dissipation T9 decreases
61 to provide positive feedback and improve stability of the circuit

B40.3 SUMMARY QUESTIONS

> Q5 A Schmitt trigger can be classified as: SET A B 12 21 21 35 43 54 54 Q6 a frequency oscillator a frequency The Schmitt trigger exhibits: SET A B 15

Q7 In a Schmitt trigger with 2 transistors, the hysteresis is proportional to: SET
A B
12 the emitter resistance common to the two transistors
21 the collector resistance RC2 of the second stage
35 the gain of the second transistor
43 the input signal frequency
54 the input signal amplitude
Q8 The Schmitt trigger is used:
SET
AB
15 to amplify an analog signal
23 to reduce the noise in a signal
32 as a comparator with hysteresis
41 to match the impedance in a circuit
54 as low frequency oscillator
Q9 The amplitude of the output signal of the Schmitt trigger used depends on:
SET
A B
15 the resistance of common emitter resistor R_{E}
23 the voltage V_{CE} of T 2
34 the collector resistance $\mathrm{R}_{\mathrm{C} 2}$ of T 2
41 all of the above three parameters
52 none of these three parameters.

APPENDIX "A": DATA SHEETS

diode 1 N4148
transistor NPN BC337
transistor NPN BC182

TYPES IN4148, IN4149, IN4446, IN4447, IN4448, 1 N4449 PLANAR SILICON SWITCHING DIODES

- Small-Size, Whiskerless, Doublo-Plug Construction
 - Extremely Stable and Reliable High-Speed Diodes
 Electrical Equivalents
 1N4148 • IN914
 1N4149 - IN916
 1N4446• IN914A
 1N4447 • 1N916A
 1N4448 - IN9148
 IN4449 • IN916B

mechanical deta
The glass-passivated silicon wafer is encased in a hermetically soaled glass package.

absolute maximum retings $\boldsymbol{\text { at }} 25^{\circ} \mathrm{C}$ frec-air temperature (unioss otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ tree-alf temperature (unless otherwise noted)

PARAMIER	TEST CONDITIONS	IN4148	1N4149	1N4446	IN4447	IN44AE	1N4449	
$V_{\text {(m) }}$ Revorse Irackdown Veltege		MIN MAX	UN					
	$\mathrm{h}_{2}=5 \mu \mathrm{~h}$	75	75	75	75	75	75	V
	$l_{\text {L }}=100 \mu \mathrm{~A}$	100	100	100	100	100	100	Y
IR Slatic Revass Current	$V_{R}=22 \%$	25	25	25	25	25	25	nd
	$Y_{R}=20 \mathrm{~V}, \mathrm{~T}_{A}=100^{\circ} \mathrm{C}$					3	,	$\mu \mathrm{H}$
	$V_{R}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	50	50	50	50	50	50	μ
VF Static formard Voltage	$\mathrm{I}_{\mathrm{H}}=5 \mathrm{~mA}$					0.620 .32	$0.63 \quad 0.73$	V
	$H_{H}=10 \mathrm{~mA}$	1	1					V
	$I_{F}=20 \mathrm{~mA}$			1	1			V
	$i_{5}=30 \mathrm{ma}$						1	V
	$i_{f}=100 \mathrm{~mA}$					1		\bar{V}
C_{5} Potal Capecitance	$\mathrm{V}_{\mathrm{R}}=0, \quad i=1 \mathrm{mHz}$	4	2	4	2	4		Pf

tiretemort of Teral Imatronemh

- Tacticater JEBES molatived dela

TYPES IN4148, IN4149, IN4446, IN4447, IN4448, IN4449

 PLANAR SILICON SWITCHING DIODES
*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	IN4148\|in4149		$\begin{array}{\|l\|} \hline \text { IN4446 } \\ \hline \text { min } \max \\ \hline \end{array}$	IN4447	1N4448	[1N4449]	UNIT
		MIN MAX	min max		MIN MAX	Mim max	min max	
Prenerse lecovory lime	$\begin{aligned} & i_{F}=10 \mathrm{~mA}, V_{R}=6 \mathrm{Y}, i_{I T}=1 \mathrm{~mA} \\ & h_{L}=100 \Omega, \text { seo figure } 1 \end{aligned}$	4	4	4	4	4	4	ns
Vammal Forward tecovery Voltaga	$I_{F}=50 \mathrm{~mA}, \mathrm{~A}=50 \Omega$ Sen Figum 2					2.5	2.5	V

*PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

INPUT VOLTAGE WAVEFORM

OUTPUT CURRENT WAVEFORM

FIOVEI 1 - RIVERSE RECOVEAY TMi

FIGURE 2 - FORWARD MECOVLAY VOLTAOE

"Imkenem JEDEC Mgintued dale

BC337, BC338

NPN Silicon Epitaxial Planar Transistors
for switching and amplifier applications. Especially suitable for AF-driver stages and low power output stages.

These types are also available subdivided into three groups $-16,-25$ and -40 , according to their DC current gain. As complementary types the PNP transistors BC327 and BC328 are recommended.

On special request these transistors are also manufactured in the pinconfiguration TO-18.

Plastic package 1003
according to DIN 41870 (\approx TO-92)
The case is impervious to light

Weight approximately 0.18 g
Dimensions in mm

Absolute Maximum Ratings

		Symbol	Value	Unit
Collector Emitter Voltage	$\begin{aligned} & \text { BC337 } \\ & \text { BC338 } \end{aligned}$	$V_{\text {CES }}$ $V_{\text {CES }}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
Collector Emitter Voltage	$\begin{aligned} & \text { BC337 } \\ & \text { BC338 } \end{aligned}$	$V_{\text {CEO }}$ $V_{\text {CEO }}$	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
Emitter Base Voltage		$V_{\text {Ebo }}$	5	\checkmark
Collector Current		l_{c}	800	mA
Peak Collector Current		$\mathrm{ICM}_{\text {cm }}$	1	A
Base Current		la	100	mA
Power Dissipation at $\mathrm{Tamo}=25^{\circ} \mathrm{C}$		Prot	625^{11}	mW
Junction Temperature		T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		T_{5}	-55 to +150	${ }^{\circ} \mathrm{C}$
${ }^{1}$ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case				

Characteristics at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$

BC337, BC338

BC337, BC338

BC182, BC183, BC184 NPN-EPITAXIAL-PLANAR-SILICON-TRANSISTOR

- Pre-Amplifiers and Driver Stages
- DC-Amplifiers
- Low-Noise Pre-Amplifiers
- Complementary to BC212 Family
- $\mathrm{h}_{21 \mathrm{e}}=125-900$ at $\mathrm{I} \mathrm{C}=2 \mathrm{~mA}$, in 3 groups
- Noise Figure max 4 dB (BC184)

description

These components are tested according to the appropriate test method of MIL.STD-750. By special agreement, they can also be tested additionally to MIL-or DIN specifications.
mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free air temperature (unless otherwise noted)

| | BC182 | BC183 | BC184 | UNIT |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Collector-Base Valtage | 60 | 45 | 45 | V |
| Collector-Emitter Voltage (See Note 1) | 50 | 30 | 30 | V |
| Emitrer-Base Voltage | 6 | 6 | 6 | V |
| Continuous Collector Current | 200 | 200 | 200 | mA |
| Continuous Device Dissipation at $25{ }^{\circ} \mathrm{C}$ (See Note 2) | 300 | 300 | 300 | mW |
| Storage Temperature Range | -5510150 | 55 to 150 | -55 to 150 | ${ }^{\circ} \mathrm{C}$ |
| Lead Temperature 1.6 mm from Case for 10 Seconds | 260 | 260 | 280 | ${ }^{\circ} \mathrm{C}$ |

NOTES: 1. This value applies when the base-emirter diode is opencircuited.
2. Derate lingarly to $150^{\circ} \mathrm{C}$ fres alr temperature at the rate of $2.4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free air temperature - BC182

	PARAMETER	TEST CONDITIONS	man	TYP	MAX	UNIT
Vaplceo	Coilector Ease Breakdown Voitage	$I_{C}=10 \mu A, I_{E}=0$	60			v
V(ar)ceo	Coliector Emirter Breakdown Voitaga	$\mathrm{I}_{\mathrm{c}}=2 \mathrm{~mA}, \mathrm{I}_{8}=0$	50			\checkmark
$V_{\text {(BR) }}$ EBO	Emitter Base Breakdown Voltape	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{C}=0$	6			v
${ }^{\text {I cro }}$	Collector Cutoft Current	$V_{C B}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			15	nA
'EBO	Emitter Cutotf Current	$\mathrm{VEB}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$			15	nA
$h_{\text {FE }}$	Static Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}, I_{C}=10 \mu \mathrm{~A}$	40			
		$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$	100		460	
		$V_{C E}=5 V, l_{C}=100 \mathrm{~mA}$ See Note 3	80			
$v_{\text {ceiset }}$	Collector Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{g}}=0.5 \mathrm{~mA}$			0.25	v
		$\begin{gathered} \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA} \\ \text { Sen Note } 3 \end{gathered}$			0.6	
$V_{\text {BEsat) }}$	Bese Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{i}_{\mathrm{B}}=5 \mathrm{~mA}$ See Nore 3			1.2	v
${ }^{21} 10$	Small-Signal Common-Emitter Formerd Currant Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$.	125		500	
		Group A	125		260	
		\square Group B	240		500	
$V_{\text {GE }}$	Base Emitter Voltage	$V_{C E}=5 \mathrm{~V} \cdot 1_{C}=10 \mu \mathrm{~A}$	0.52			v
		$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{C}=100 \mu \mathrm{~A}$		0.56		
		$v_{C E}=5 v_{1} i_{C}=2 \mathrm{~mA}$	0.55		0.7	
		$v_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		0.68		
$C_{0 b}$	Common Base Output Capacitanca	$V_{C B}=10 \mathrm{~V}, t_{E}=0, f=1 \mathrm{MHz}$		3.0	5	pf
$c_{\text {ib }}$	Common Base Inout Capecitance	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0, f=1 \mathrm{MHz}$		9.5		pf
${ }^{\text {t }}$ T	Transition Frequency	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}, f=100 \mathrm{mHz}$		290		MHz
NF	Noise Figure	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=2 \mathrm{k} \Omega, \\ & \mathrm{f}=1 \mathrm{kHz}, \Delta \mathrm{f}=1 \mathrm{~Hz} \end{aligned}$			10	0

NOTE: 3. These paramatars must be measurad using puise techniques $t_{p}=300 \mu \mathrm{~S}$, duty cycio $\mathbf{\leqslant 2 \%}$.

ELETTRONICA VENETA spa - 31045 Motta di Livenza (Treviso) ITALY Via Postunia. 16 - Tel. +39 04227657 r.a. - Fax +39 0422861901
www.elettronicaveneta.com

