
Lecture 4

#define TRUE FALSE
//Happy debugging suckers

• The integrated debugger that ships with GCC is called GDB (GNU
DeBugger)

• GDB is a command line tool, just like GCC

• There are several GUI interfaces for GDB: DDD, Netbeans, Eclipse, etc.

• Installing GCC will also install GDB

• To install DDD in Linux Mint, type sudo apt-get install ddd (Same
for Netbeans/ Eclipse

• In order to be able to debug a C program, it needs to be compiled with
debug symbols: gcc -g test.c –o test

• Running the debugger on a program means running the program in
debug mode (this means it needs to compile first): gdb test

Debugging Tutorial

• Operations available in debug mode:

• Run: runs the program

• Breakpoint: stop the program at a specific line in the code, or when entering a
specified function

• Conditional breakpoint: stop the program at a specific line in the code, when a
condition is met

• Step over: executes a single line of code, stopping on the next line

• Step into: executes a single line of code; if the line has a function call, it will stop on
the first line of the function

• Print: prints the value of a variable, if it is visible in the current context

• Watch: watches a variable, updating its value every step

• Continue: resumes the execution of the program until the first breakpoint, the
program end or a segmentation fault

• Backtrace: Prints the execution stack and the lines of code for every function call

Debugging Tutorial (cont’d)

“ If debugging is the process of removing software bugs, then programming must be
the process of putting them in. ” - Edsger Dijkstra

• The array is the simplest data structure – a sequence of elements of the
same type

• The array variable name is a pointer to the first element in the array.

• There are two types of arrays:

• Constant size, which are allocated either in program memory or on the stack

• Variable size, which are only allocated manually, in the heap

Arrays

Constant-Size Array Variable-Size Array

char g_string[10];

int main(){
 int some_array[20];
 return 0;
}

char *g_string;

int main(){
 g_string = (char*)malloc(10 * sizeof(char));
 int *some_array = (int*)malloc(2o * sizeof(int));
 //…
 free(g_string);
 free(some_array);
 return 0;
}

Arrays (cont’d)

Constant-Size Array Variable-Size Array

char g_string[10];

int main(){
 int some_array[20];
 return 0;
}

char *g_string;

int main(){
 g_string = (char*)malloc(10 * sizeof(char));
 int *array= (int*)malloc(2o * sizeof(int));
 //…
 free(g_string);
 free(array);
 return 0;
}

Memory

Program Stack

Memory

Program Stack Heap

g_string

array

Pros Cons

• Fixed size. Once an array is filled, a
larger one needs to be allocated and
data copied

• A continuous memory of the required
size needs to be available in the
memory

• Insertions and deletions are costly
imply copying data back and forth

• Allows constant time random access

• Data is in a continuous memory zone
so when it is read sequentially, it is
properly cached, optimizing access
speeds

Arrays (cont’d)

1. Write a program that inputs a number N from the keyboard, creates an
array of N elements of type int, initializes them with random values, then
finds the maximum value and displays it on the standard output stream.

2. Write a program that inputs a number N from the keyboard, creates an
array of N elements of type char, initializes them with random values,
then computes the overall sum of all elements and displays it on the
standard output stream.

3. Create an array of 52 char values, initializing them with values form 1 to
52. Write a function that will shuffle them randomly, then print the entire
array on the standard output stream.

Arrays - Practice

• Sorting is a fundamental problem in computer science, and it has
countless real-life applications

• There are several sorting algorithms but only a few are actually used in
practice due to having high performance

• We will study:

• Selection Sort

• Bubble Sort

• Insertion Sort

• Merge Sort

• Quicksort

Arrays – Algorithms - Sorting

Algorithm: For each position in the array, find the minimum value of all
elements between that position and the end of the array and swap that
element with the one on the current position.

Performance:

• Worst case performance: О(n2)

• Best case performance: О(n2)

• Average case performance: О(n2)

Practice:

Implement and run Selection Sort on a random generated array of data and
measure execution time.

Selection Sort

Algorithm: Compare each value with its next neighbor and swap if they are
in the wrong order. Repeat until no swaps are made for a whole pass of the
array.

Performance:

• Worst case performance: О(n2)

• Best case performance: О(n)

• Average case performance: О(n2)

Practice:

Implement and run Bubble Sort on a random generated array of data and
measure execution time.

Bubble Sort

Insertion Sort
Algorithm: Iterate through each element in the input array and place it in the
output array. Particularly useful for sorting “online” (i.e., can sort a list as it
receives it).

Performance:

• Worst case performance: О(n2) comparisons, swaps

• Best case performance: O(n) comparisons, O(1) swaps

• Average case performance: О(n2) comparisons, swaps

Practice:

Implement and run Insertion Sort on a random generated array of data and
measure execution time.

Merge Sort
Algorithm: Divide-et-impera approach consisting of splitting the array in two
pieces, sorting the two pieces, then iterate through the two sorted sub-
arrays and interleave them into a final sorted array. Particularly useful when
merging two sorted arrays (thus the name Merge Sort).

Performance:

• Worst case performance: O(n log n)

• Best case performance:

• O(n log n) typical,

• O(n) natural variant

• Average case performance: O(n log n)

Practice:

Implement and run Merge Sort on a random generated array of data and
measure execution time.

Quicksort
Algorithm: Divide-et-impera approach consisting of taking the first value of
the array and use it as a pivot, moving it through several iterations so that it
ends up in the correct spot in the array, having only smaller elements on the
left and larger elements on the right. Then recursively apply quick sort on
the two resulting segments.

Performance:

• Worst case performance: O(n2)

• Best case performance:

• O(n log n) (simple partition)

• or O(n) (three-way partition and equal keys)

• Average case performance: O(n log n)

• Practice:

Implement and run Quicksort on a random generated array of data and
measure execution time.

Thank you!

*Please and try and solve all practice exercises that haven’t been solved during the lecture.

